Validation Report

Kansas, SPS-2 Task Order 18, CLIN 2 April 17 to 18, 2007

1 Executive Summary	1
2 Corrective Actions Recommended	3
3 Post Calibration Analysis	4
3.1 Temperature-based Analysis	7
3.2 Speed-based Analysis	9
3.3 Classification Validation	11
3.4 Evaluation by ASTM E-1318 Criteria	12
4 Pavement Discussion	12
4.1 Profile Analysis	12
4.2 Distress Survey and Any Applicable Photos	13
4.3 Vehicle-pavement Interaction Discussion	13
5 Equipment Discussion	13
5.1 Pre-Evaluation Diagnostics	13
5.2 Calibration Process	
5.2.1 Calibration Iteration 1	13
5.3 Summary of Traffic Sheet 16s	15
5.4 Projected Maintenance/Replacement Requirements	16
6 Pre-Validation Analysis	
6.1 Temperature-based Analysis	20
6.2 Speed-based Analysis	22
6.3 Classification Validation	24
6.4 Evaluation by ASTM E-1318 Criteria	25
6.5 Prior Validations	26
7 Data Availability and Quality	27
8 Data Sheets	31
9 Updated Handout Guide and Sheet 17	32
10 Updated Sheet 18	32
11 Traffic Sheet 16(s)	32

List of Tables

Table 1-1 Post-Validation results – 200200 – 18-Apr-2007	1
Table 1-2 Results Based on ASTM E-1318-02 Test Procedures	2
Table 3-1 Post-Validation Results – 200200 – 18-Apr-2007	4
Table 3-2 Post-Validation Results by Temperature Bin – 200200 – 18-Apr-2007	7
Table 3-3 Post-Validation Results by Speed Bin – 200200 – 18-Apr-2007	9
Table 3-4 Truck Misclassification Percentages for 200200 – 18-Apr-2007	11
Table 3-5 Truck Classification Mean Differences for 200200 - 18-Apr-2007	12
Table 3-6 Results of Validation Using ASTM E-1318-02 Criteria	12
Table 5-1 Calibration Iteration 1 Results – 200200 – 04-Apr-2007 (9:20:00 AM)	15
Table 5-2 Classification Validation History – 200200 – 18-Apr-2007	16
Table 5-3 Weight Validation History – 200200 – 18-Apr-2007	16
Table 6-1 Pre-Validation Results – 200200 – 17-Apr-2007	17
Table 6-2 Pre-Validation Results by Temperature Bin – 200200 – 17-Apr-2007	20
Table 6-3 Pre-Validation Results by Speed Bin – 200200 – 17-Apr-2007	22
Table 6-4 Truck Misclassification Percentages for 200200 – 17-Apr-2007	24
Table 6-5 Truck Classification Mean Differences for 200200 – 17-Apr-2007	25
Table 6-6 Results of Validation Using ASTM E-1318-02 Criteria	
Table 6-7 Last Validation Final Results – 200200 – 31-Oct-2006	26
Table 6-8 Last Validation Results by Temperature Bin – 200200 – 31-Oct-2006	27
Table 6-9 Last Validation Results by Speed Bin – 200200 – 31-Oct-2006	27
Table 7-1 Amount of Traffic Data Available 200200 – 17-Apr-2007	28
Table 7-2 GVW Characteristics of Major sub-groups of Trucks – 200200 – 18-Apr-	2007
	29

List of Figures

Figure 2-1 - Broken Conduit at 200200 – 17-Apr-2007 3
Figure 2-2 - Collapsed Conduit Trench - 200200 - 17-Apr-2007 3
Figure 3-1 Post-Validation Speed-Temperature Distribution – 200200 – 18-Apr-2007 5
Figure 3-2 Post-validation GVW Percent Error vs. Speed – 200200 – 18-Apr-2007 6
Figure 3-3 Post-Validation GVW Percent Error vs. Temperature – 200200 – 18-Apr-2007
Figure 3-4 Post-Validation Spacing vs. Speed – 200200 – 18-Apr-2007
Figure 3-5 Post-Validation GVW Percent Error vs. Temperature by Truck – 200200 – 18-Apr-2007
Figure 3-6 Post-Validation Steering Axle Error vs. Temperature by Group – 200200 – 18-Apr-2007
Figure 3-7 Post-Validation GVW Percent Error vs. Speed by Truck – 200200 – 18-Apr- 2007
Figure 3-8 Post-Validation Steering Axle Percent Error vs. Speed by Group – 200200 – 18-Apr-2007
Figure 5-1 – Pre-validation GVW Percent Error vs. Speed – 200200 – 17-Apr-2007 14
Figure 5-2 Calibration Iteration 1 GVW Percent Error vs. Speed Group – 200200 – 04- Apr-2007 (9:20:00 AM)
Figure 6-1 Pre-Validation Speed-Temperature Distribution – 200200 – 17-Apr-2007 18
Figure 6-2 Pre-validation GVW Percent Error vs. Speed – 200200 – 17-Apr-2007 18
Figure 6-3 Pre-Validation GVW Percent Error vs. Temperature – 200200 – 17-Apr-2007
Figure 6-4 Pre-Validation Spacing vs. Speed - 200200 - 17-Apr-2007 20
Figure 6-5 Pre-Validation GVW Percent Error vs. Temperature by Truck – 200200 – 17- Apr-2007
Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group – 200200 – 17-
Apr-200722
Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group - 200200 –17-Apr-2007
Figure 6-8 Pre-Validation Steering Axle Percent Error vs. Speed Group - 200200 -17-
Apr-200724
Figure 6-9 Last Validation GVW Percent Error vs. Speed – 200200 – 31-Oct-2006 26
Figure 7-1 Expected GVW Distribution Class 9 – 200200 – 18-Apr-2007 30
Figure 7-2 Expected GVW Distribution Class 5 – 200200 – 18-Apr-2007 31
Figure 7-3 Expected Vehicle Distribution – 200200 – 18-Apr-2007

1 Executive Summary

A visit was made to the Kansas 0200 site on April 17 to 18, 2007 for the purposes of conducting a validation of the WIM system located on I-70 at 1 mile west of the Chapman interchange. The SPS-2 is located in the righthand, westbound lane of a four-lane divided facility. The LTPP lane is the only lane that is instrumented at this site. The validation procedures were in accordance with LTPP's SPS WIM Data Collection Guide dated August 21, 2001.

This site was installed as part of a relocation of the abandoned site located approximately 400 feet west of this site. This is the second validation visit to this location, the first occurring October 31 and November 1, 2006. The site was installed as part of Phase 2 of the Pooled Fund Study on June 6 to 8, 2006 by IRD.

This site demonstrates the ability to produce research quality loading data under the observed conditions. The classification data is also of research quality.

The site is instrumented with bending plate WIM Sensors and iSINC electronics. It is installed in portland cement concrete, 400 feet long.

The validation used the following trucks:

- 1) 5-axle tractor-trailer with a tractor having an air suspension and trailer with a standard rear tandem and air suspension loaded to 78,590 lbs., the "golden" truck.
- 2) 5-axle tractor semi-trailer with a tractor having an air suspension and a trailer with a standard rear tandem and a tapered leaf suspension loaded to 66,510 lbs., the "partial" truck.

The validation speeds ranged from 54 to 70 miles per hour. The pavement temperatures ranged from 52 to 94 degrees Fahrenheit. The desired speed range was achieved during this validation. The desired 30 degree Fahrenheit temperature range was achieved.

Table 1-1 Post-Validation results – 200200 – 18-Apr-2007

SPS-1, -2, -5, -6 and -8	95 %Confidence	Site Values	Pass/Fail
	Limit of Error		
Steering axles	±20 percent	$-0.3 \pm 10.7\%$	Pass
Tandem axles	±15 percent	$0.6 \pm 9.2\%$	Pass
GVW	±10 percent	$0.5 \pm 6.3\%$	Pass
Speed	<u>+</u> 1 mph [2 km/hr]	$0.1 \pm 0.8 \text{ mph}$	Pass
Axle spacing	<u>+</u> 0.5 ft [150mm]	-0.1 ± 0.1 ft	Pass

The pavement condition appeared satisfactory for conducting a performance evaluation. There were no distresses observed that would influence truck motions significantly. A visual survey determined that there is no discernable bouncing or avoidance by trucks in the sensor area.

Profile data for this site was collected by the Regional Support Contract on June 5, 2006. As we have noted above, installation activities began on June 6, 2006, therefore the profile data collected was not utilized in the preparation of this report, as the scales were not installed at the time of its collection.

If this site had been evaluated using ASTM E-1318-02 it would have met the conditions for a Type I site exclusive of wheel loads. LTPP does not validate WIM performance with respect to wheel loads.

Table 1-2 Results Based on ASTM E-1318-02 Test Procedures

	Limits for Allowable	Percent within	
Characteristic	Error	Allowable Error	Pass/Fail
Single Axles	± 20%	100%	Pass
Axle Groups	± 15%	100%	Pass
GVW	± 10%	100%	Pass

This site needs five years of data to meet the goal of five years of research quality data.

2 Corrective Actions Recommended

The cable conduit from the leading WIM sensor and loop sensor is broken at the point where the shoulder meets the grade as shown in Figure 2-1. The conduit needs to be replaced to prevent damage to the sensor lead-ins.

Figure 2-1 - Broken Conduit at 200200 - 17-Apr-2007

The trench for the conduit leading from the roadside pull box to the cabinet has collapsed. As shown in Figure 2-2. The trench needs to be filled and compacted.

Figure 2-2 - Collapsed Conduit Trench - 200200 - 17-Apr-2007

No other corrective actions are required at this time.

3 Post Calibration Analysis

This final analysis is based on test runs conducted April 18, 2007 during the morning and afternoon hours at test site 200200 on I-70. This SPS-2 site is at milepost 287.5 on the westbound, righthand of a four-lane divided facility. No auto-calibration was used during test runs. The two trucks used for the calibration and for the subsequent validation included:

- 1. 5-axle tractor-trailer with a tractor having an air suspension and trailer with a standard rear tandem and air suspension loaded to 78,590 lbs., the "golden" truck.
- 2. 5-axle tractor semi-trailer with a tractor having an air suspension and a trailer with a standard rear tandem and a tapered leaf suspension loaded to 66,510 lbs., the partial truck.

Each truck made a total of 20 passes over the WIM scale at speeds ranging from approximately 54 to 70 miles per hour. The desired speed range was achieved during this validation. Pavement surface temperatures were recorded during the test runs ranging from about 52 to 94 degrees Fahrenheit. The desired 30 degree Fahrenheit temperature range was achieved. The computed values of 95% confidence limits of each statistic for the total population are in Table 3-1.

As shown in Table 3-1, this site meets all of the performance criteria for research quality data.

Table 3-1 Post-Validation Results – 200200 – 18-Apr-2007

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Steering axles	±20 percent	$-0.3 \pm 10.7\%$	Pass
Tandem axles	±15 percent	$0.6 \pm 9.2\%$	Pass
GVW	±10 percent	$0.5 \pm 6.3\%$	Pass
Speed	<u>+</u> 1 mph [2 km/hr]	$0.1 \pm 0.8 \text{ mph}$	Pass
Axle spacing	+ 0.5 ft [150mm]	-0.1 ± 0.1 ft	Pass

The sunny weather conditions during the entire testing period resulted in a wide range of pavement temperatures. The runs were also conducted at various speeds to determine the effects of these variables on the performance of the WIM scale. To investigate these effects, the dataset was split into three speed groups and three temperature groups. The distribution of runs by speed and temperature is illustrated in Figure 3-1. The figure indicates that the desired distribution of speed and temperature combinations was achieved for this set of validation runs.

The three speed groups were divided as follows: Low speed -54 to 59 mph, Medium speed -60 to 67 mph and High speed -68+ mph. The three temperature groups were created by splitting the runs between those at 52 to 64 degrees Fahrenheit for Low

temperature, 65 to 79 degrees Fahrenheit for Medium temperature and 80 to 94 degrees Fahrenheit for High temperature.

Speed versus Temperature Combinations

Figure 3-1 Post-Validation Speed-Temperature Distribution – 200200 – 18-Apr-2007

A series of graphs was developed to investigate visually any sign of a relationship between speed or temperature and the scale performance. Figure 3-2 shows the GVW Percent Error vs. Speed graph for the population as a whole.

From the figure, it appears that the equipment estimates GVW reasonably at lower speeds and the increasingly overestimates GVW as speed increases. Variability in error appears to be consistent over the entire speed range.

Figure 3-2 Post-validation GVW Percent Error vs. Speed – 200200 – 18-Apr-2007

Figure 3-3 shows the shows a lack of a relationship between temperature and GVW percentage error.

Figure 3-3 Post-Validation GVW Percent Error vs. Temperature – 200200 – 18-Apr-2007

Figure 3-4 shows the relationship between the drive tandem spacing errors in feet and speeds. This graph is used as a potential indicator of classification errors due to failure to correctly identify spacings on a vehicle. Since the most common reference value is the drive tandem on a Class 9 vehicle, this is the spacing evaluated and plotted for validations. The graph indicates that the errors in tandem spacings for the test trucks were not affected by changes in speed. Variability in spacing error is greater at the lower speeds. The speeds at which this variability exists are below the 15th percentile speed for the site. The errors are expected to have minimal impact on classification distributions.

Drive Tandem Spacing vs. Radar Speed

Figure 3-4 Post-Validation Spacing vs. Speed – 200200 – 18-Apr-2007

3.1 Temperature-based Analysis

The three temperature groups were created by splitting the runs between those at 52 to 64 degrees Fahrenheit for Low temperature, 65 to 79 degrees Fahrenheit for Medium temperature and 80 to 94 degrees Fahrenheit for High temperature.

Table 3-2 Post-Validation Results by Temperature Bin – 200200 – 18-Apr-2007

Element	95% Limit	Low Temperature 52 to 64 °F	Medium Temperature 65 to 79 °F	High Temperature 80 to 94 °F
Steering axles	<u>+</u> 20 %	$-1.2 \pm 10\%$	$-2 \pm 11.4\%$	$1.1 \pm 11.7\%$
Tandem axles	<u>+</u> 15 %	$1.4 \pm 8.9\%$	$-0.1 \pm 9.6\%$	$0.7 \pm 9.7\%$
GVW	<u>+</u> 10 %	$1.1 \pm 7.2\%$	$-0.5 \pm 6.7\%$	$0.8 \pm 6.8\%$
Speed	<u>+</u> 1 mph	$-0.1 \pm 0.8 \text{ mph}$	0.2 ± 0.9 mph	$0.1 \pm 0.9 \text{ mph}$
Axle spacing	<u>+</u> 0.5 ft	-0.1 ± 0.1 ft	-0.1 ± 0.2 ft	-0.1 ± 0.1 ft

From Table 3-2, it appears that the equipment estimates all weights with reasonable accuracy at all temperatures. Individually, variability in error for each weight group appears to be consistent throughout the entire temperature range.

Figure 3-5 is the distribution of GVW Errors versus Temperature by Truck graph. From the figure, it appears that GVW mean error is not particularly affected by temperature. Variability appears to be slightly less at the lower temperatures, although this may be driven by the lower number of samples at those temperatures.

GVW Errors vs. Temperature by Truck

Figure 3-5 Post-Validation GVW Percent Error vs. Temperature by Truck-200200-18-Apr-2007

Figure 3-6 shows the relation between steering axle errors and temperature. This graph is included due to the frequent use of steering axle weights of Class 9 vehicles for calibration. This site does not use auto-calibration. The steering axles in this graph are associated only with Class 9 vehicles.

From the figure, it can be seen that the equipment estimates steering axle weights with reasonable accuracy throughout the temperature range. Variability in steering axle error appears to be lesser at the lower temperatures.

Steering Axle Errors vs. Temperature

Figure 3-6 Post-Validation Steering Axle Error vs. Temperature by Group – 200200 – 18-Apr-2007

3.2 Speed-based Analysis

The three speed groups were divided using 54 to 59 mph for Low speed, 60 to 67 mph for Medium speed and 68+ mph for High speed.

Table 3-3 Post-Validation Results by Speed Bin – 200200 – 18-Apr-2007

Element	95% Limit	Low Speed 54 to 59 mph	Medium Speed 60 to 67 mph	High Speed 68+ mph
Steering axles	<u>+</u> 20 %	$1.7 \pm 7.2\%$	$-2.8 \pm 12.2\%$	$1.0 \pm 12.2\%$
Tandem axles	<u>+</u> 15 %	$-0.3 \pm 8.2\%$	$0.5 \pm 9.8\%$	$1.7 \pm 10.3\%$
GVW	<u>+</u> 10 %	$0.0 \pm 6.6\%$	$0.0 \pm 6.2\%$	$1.6 \pm 8.0\%$
Speed	<u>+</u> 1 mph	0.2 ± 0.8 mph	0.0 ± 0.8 mph	0.1 ± 1.2 mph
Axle spacing	<u>+</u> 0.5 ft	$0.0 \pm 0.2 \text{ ft}$	-0.1 ± 0.1 ft	-0.1 ± 0.0 ft

From Table 3-3, it can be seen that the equipment tends to estimate all weights with reasonable accuracy at all speeds. Variability in error for all weights generally increases as speed increases.

Figure 3-7 illustrates the ability of the equipment to estimate GVW with reasonable accuracy at the lower speeds, and then appears to have the tendency to increasingly overestimate GVW as speed increases. Both trucks appear to demonstrate the same speed trends. Variability in error appears to be slightly greater at the higher speeds. The overestimation is occurring near the 85th percentile speed.

Figure 3-7 Post-Validation GVW Percent Error vs. Speed by Truck – 200200 – 18-Apr-2007

Figure 3-8 shows the relation between steering axle errors and speed. This graph is included due to the frequent use of steering axle weights of Class 9 vehicles for autocalibration. This site does not use auto-calibration. The steering axles in this graph are associated only with Class 9 vehicles.

From the figure, it appears that the WIM equipment overestimates steering axle weights at the lower speeds and underestimates steering axle weights at the medium and higher speeds. The variability of error by truck seems to be greater at the medium and high speeds when compared with the lower speeds.

Steering Axle Errors vs. Speed

Figure 3-8 Post-Validation Steering Axle Percent Error vs. Speed by Group – 200200 – 18-Apr-2007

3.3 Classification Validation

This LTPP installed site uses the FHWA 13-bin classification scheme and the LTPP classification algorithm. Classification 15 has been added to define unclassified vehicles.

The classification validation is intended to find gross errors in vehicle classification, not to validate the installed algorithm. A sample of 100 trucks was collected at the site. Video was also taken at the site to provide ground truth for the evaluation. Based on a 100 percent sample it was determined that there are 0 percent unknown vehicles and 0 percent unclassified vehicles.

The second check is the ability of the algorithm to correctly distinguish between truck classes with no more than 2% errors in such classifications. Table 3-4 has the classification error rates by class. The overall misclassification rate is 0 percent.

Table 3-4 Truck Misclassification Percentages for 200200 – 18-Apr-2007

Class	Percent	Class	Percent	Class	Percent
	Error		Error		Error
4	N/A	5	0	6	0
7	N/A				
8	0	9	0	10	0
11	0	12	0	13	N/A

The misclassification percentage is computed as the probability that a pair containing the class of interest does NOT include a match. Thus if there are eight pairs of observations with at least one Class 9 and only six of them are matches, the error rate is 25 percent.

The percent error and the mean differences reported below do not represent the same statistic. It is possible to have error rates greater than 0 with a mean difference of zero.

Table 3-5 Truck Classification Mean Differences for 200200 – 18-Apr-2007

Class	Mean	Class	Mean	Class	Mean
	Difference		Difference		Difference
4	N/A	5	0	6	0
7	N/A				
8	0	9	0	10	0
11	0	12	0	13	N/A

These error rates are normalized to represent how many vehicles of the class are expected to be over or under-counted for every hundred of that class observed by the equipment. Thus a value of 0 means the class is identified correctly on average. A number between -1 and -100 indicates at least that number of vehicles either missed or not assigned to the class by the equipment. It is not possible to miss more than all of them or one hundred out of one hundred. Numbers 1 or larger indicate at least how many more vehicles are assigned to the class than the actual "hundred observed". Classes marked Unknown are those identified by the equipment but no vehicles of the type were seen by the observer. There is no way to tell how many vehicles of that type might actually exist. N/A means no vehicles of the class were recorded by either the equipment or the observer.

3.4 Evaluation by ASTM E-1318 Criteria

The ASTM E-1318 criteria for a successful validation of Type I sites is 95% of the observed errors within the limits for allowable errors for each of the relevant statistics. If this site had been evaluated using ASTM E-1318-02 it would have met the conditions for a Type I site exclusive of wheel loads. LTPP does not validate WIM performance with respect to wheel loads.

Table 3-6 Results of Validation Using ASTM E-1318-02 Criteria

	Limits for Allowable	Percent within	
Characteristic	Error	Allowable Error	Pass/Fail
Single Axles	± 20%	100%	Pass
Axle Groups	± 15%	100%	Pass
GVW	± 10%	100%	Pass

4 Pavement Discussion

The pavement condition did not appear to influence truck movement across the sensors.

4.1 Profile Analysis

Profile data collected after the site installation does not exist. A site visit to collect profile data has not been scheduled yet. An amended report will be submitted when the data is available.

4.2 Distress Survey and Any Applicable Photos

During a visual survey of the pavement no distresses that would influence truck movement across the WIM scales were noted.

4.3 Vehicle-pavement Interaction Discussion

A visual observation of the trucks as they approach, traverse and leave the sensor area did not indicate any visible motion of the trucks that would affect the performance of the WIM scales. Trucks appear to track down the wheel path and daylight cannot be seen between the tires of any of the sensors for the equipment.

5 Equipment Discussion

The traffic monitoring equipment at this location includes bending plate and iSINC. These sensors are installed in a staggered configuration in a portland cement concrete pavement about 400 ft in length.

All equipment and sensors were installed from June 6 to June 8, 2006 as part of the SPS WIM Phase II contract.

5.1 Pre-Evaluation Diagnostics

A complete electronic and electrical check of all system components including in-road sensors, electrical power, and telephone service were performed immediately prior to the evaluation. All sensors and system components were found to be within operating parameters. As with the prior validation, the trailing loop gave low resistive values between the loop wires and the cable shield; however, the loop appears to working properly.

The "ghost" axle problem experienced during the last validation was again noted during this validation. Consultation with the manufacturer's installation representative resulted in adjusting (raising) the system threshold setting. This adjustment was performed after the first four trucks runs and appeared to eliminate the problem.

A complete visual inspection of all WIM system and support components was also conducted. The cable conduit from the leading sensors has been damaged and needs to be repaired. All other components appeared to be in good physical condition.

5.2 Calibration Process

The equipment required one iteration of the calibration process between the initial 40 runs and the final 40 runs due to failure of steering axle errors to meet the definitions of research quality data.

5.2.1 Calibration Iteration 1

For this equipment, there are 5 speed designated weight compensation factors that are adjusted to directly affect the weight reported by the WIM equipment. To reduce overestimation of weights these factors are reduced by the same percentage of the overestimation. If the weights are underestimated, these factors are increased by the same percentage as the mean error.

For this equipment, the final system compensation factors from the last validation were:

- 55 mph 3570
- 60 mph 3680
- 65 mph 3720
- 70 mph 3755
- 75 mph 3700

At some time between the last validation visit and this visit these factors were raised 6%, and resulted in the following preliminary compensation factors for this visit:

- 55 mph 3784
- 60 mph 3901
- 65 mph 3943
- 70 mph 3980
- 75 mph 3922

The results of the Pre-Validation from April 17, 2007 are illustrated in Figure 5-1. As shown, the equipment demonstrated a tendency to underestimate GVW at medium and high speeds. Scatter appeared to be greater at the medium and high speeds.

Figure 5-1 – Pre-validation GVW Percent Error vs. Speed – 200200 – 17-Apr-2007

Based on the results from the Pre-Validation of April 17, 2007, which produced an error range of -10.0% to +5.0%, the compensation factors were adjusted as follows:

- 55 mph not changed at 3784
- 60 mph increased 2.0% to 3979

- 65 mph increased 2.0% to 4022
- 70 mph increased 2.0% to 4060
- 75 mph increased 5.0% to 4118

Changes were made by the Validation Task Leader. Results of the Calibration verification are shown in Table 5-1 and Figure 5-2.

Table 5-1 Calibration Iteration 1 Results – 200200 – 04-Apr-2007 (9:20:00 AM)

SPS-1, -2, -5, -6 and -8	95 %Confidence	Site Values	Pass/Fail
	Limit of Error		
Steering axles	±20 percent	$-2.0 \pm 10.2\%$	Pass
Tandem axles	±15 percent	$1.4 \pm 8.9\%$	Pass
GVW	±10 percent	$1.0 \pm 7.3\%$	Pass
Speed	<u>+</u> 1 mph	$-0.1 \pm 0.8 \text{ mph}$	Pass
Axle spacing	<u>+</u> 0.5 ft	-0.1 ± 0.1 ft	Pass

10.0% 5.0% -5.0% -10.0% 10.0% 5.0% -10.0%

GVW Errors by Speed

Figure 5-2 Calibration Iteration 1 GVW Percent Error vs. Speed Group – 200200 – 04-Apr-2007 (9:20:00 AM)

Speed (mph)

After the first calibration, it was determined that the system was estimating all weights reasonably well and so further calibration was not deemed necessary. Thirty additional test runs were conducted to complete the requirement of forty post-validation runs.

5.3 Summary of Traffic Sheet 16s

This site has validation information from previous visits as well as the current one in the tables below. Table 5-2 has the information for the Pavement Performance database table

TRF_CALIBRATION_AVC for Sheet 16s submitted prior to this validation as well as the information for the current visit.

Table 5-2 Classification Validation History – 200200 – 18-Apr-2007

Date	Method	Mean Difference			Percent	
		Class 9	Class 9 Class 8 Other 1 Other 2			
04/18/07	Manual	0.0	0.0			0.0
04/17/07	Manual	-1.2	0.0			0.0
11/01/06	Manual	1.2	0.0			0.0
10/31/06	Manual	3.0	22.2			0.0

Table 5-3 has the information for the Pavement Performance database table TRF_CALIBRATION_WIM for Sheet 16s submitted prior to this validation as well as the information for the current visit.

Table 5-3 Weight Validation History – 200200 – 18-Apr-2007

Date	Method	Mean Error and (SD)		
		GVW	Single Axles	Tandem Axles
04/18/07	Test Trucks	0.5 (3.1)	-0.3 (5.3)	0.6 (4.6)
04/17/07	Test Trucks	-1.5 (3.9)	-3.0 (8.7)	-1.2 (5.5)
11/01/06	Test Trucks	-1.6 (2.3)	-4.8 (3.8)	-1.1 (2.9)
10/31/06	Test Trucks	-1.2 (3.2)	-3.8 (4.7)	-1.8 (6.7)

5.4 Projected Maintenance/Replacement Requirements

There are no corrective maintenance actions required at this site at this time.

Under a separate LTPP contract, this site is to be visited semi-annually for routine preventive equipment diagnostics and inspection. Annual validations are also anticipated.

6 Pre-Validation Analysis

This pre-validation analysis is based on test runs conducted April 17, 2007 during the morning and afternoon hours at 200200 on 1 mile west of the Chapman interchange. This SPS-2 site is at milepost 287.5 on I-70 in the westbound, righthand of a four-lane divided facility. No auto-calibration was used during test runs. The two trucks used for initial validation included:

- 1. 5-axle tractor semi-trailer combination with a tractor having an air suspension and trailer with standard rear tandem and an air suspension loaded to 79,370 lbs.
- 2. 5-axle tractor semi-trailer with a tractor having an air suspension and a trailer with a standard rear tandem and a tapered leaf suspension loaded to 66,770 lbs., the "partial" truck.

For the initial validation each truck made a total of 20 passes over the WIM scale at speeds ranging from approximately 53 to 70 miles per hour. The desired speed range was achieved during this validation. Surface temperatures were recorded during the test runs ranging from about 52 to 72 degrees Fahrenheit. The desired 30 degree Fahrenheit temperature range was not achieved. The computed values of 95% confidence limits of each statistic for the total population are in Table 6-1.

As shown in Table 6-1, the site did not meet the requirements for steering axle or speed accuracies. It was determined that a calibration was necessary to bring the system within tolerances.

Table 6-1 Pre-Validation Results – 200200 – 17-Apr-2007

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Steering axles	±20 percent	$-3.0 \pm 17.5\%$	Fail
Tandem axles	±15 percent	$-1.2 \pm 10.9\%$	Pass
GVW	±10 percent	$-1.5 \pm 7.9\%$	Pass
Speed	<u>+</u> 1 mph [2 km/hr]	$-0.3 \pm 1.1 \text{ mph}$	Fail
Axle spacing	<u>+</u> 0.5 ft [150mm]	-0.1 ± 0.1 ft	Pass

The test runs were conducted primarily during the mid-morning to late afternoon hours. Full cloud cover during the entire test period resulted in a narrow range of pavement temperatures. The runs were also conducted at various speeds to determine the effects of these variables on the performance of the WIM scale. To investigate these effects, the dataset was split into three speed groups and two temperature groups. The distribution of runs within these groupings is illustrated in Figure 6-1. The figure indicates that the desired distribution of speed and temperature combinations was not achieved for this set of validation runs.

The three speed groups were divided into 53 to 59 mph for Low speed, 60 to 67 mph for Medium speed and 68+ mph for High speed. The two temperature groups were created by splitting the runs between those at 52 to 65 degrees Fahrenheit for Low temperature and 66 to 72 degrees Fahrenheit for High temperature.

Speed versus Temperature Combinations

Figure 6-1 Pre-Validation Speed-Temperature Distribution – 200200 – 17-Apr-2007

A series of graphs was developed to investigate visually for any sign of any relationship between speed or temperature and the scale performance.

Figure 6-2 shows the GVW Percent Error vs. Speed graph for the population as a whole. The figure illustrates the tendency for the equipment to overestimate GVW at low speeds and underestimate GVW at medium and high speeds. Variability appears greater at the medium and high speeds.

Figure 6-2 Pre-validation GVW Percent Error vs. Speed – 200200 – 17-Apr-2007

Figure 6-3 shows the relationship between temperature and GVW percentage error. From the figure, it appears that the GVW is measured reasonably accurately over the entire temperature range. Variability in error appears slightly greater at the higher end of the temperatures range.

GVW Errors by Temperature

Figure 6-3 Pre-Validation GVW Percent Error vs. Temperature – 200200 – 17-Apr-2007

Figure 6-4 shows the relationship between the drive tandem spacing errors in feet and speeds. This graph is used as a potential indicator of classification errors due to failure to correctly identify spacings on a vehicle. Since the most common reference value is the drive tandem on a Class 9 vehicle, this is the spacing evaluated and plotted for validations. The graph indicates that the errors in tandem spacings for the test trucks were not affected by changes in speed. Variability in spacing error is greater at the lower speeds.

Drive Tandem Spacing vs. Radar Speed

Figure 6-4 Pre-Validation Spacing vs. Speed - 200200 – 17-Apr-2007

6.1 Temperature-based Analysis

The two temperature groups were created by splitting the runs between those at 52 to 65 degrees Fahrenheit for Low temperature and 66 to 72 degrees Fahrenheit for High temperature.

Table 6-2 Pre-Validation Results by Temperature Bin – 200200 – 17-Apr-2007

Element	95% Limit	Low Temperature 52 to 65 °F	High Temperature 66 to 72 °F
Steering axles	<u>+</u> 20 %	-1.1 ± 17.9%	-4.1 ± 18.2%
Tandem axles	<u>+</u> 15 %	-1.0 ± 8.4%	-1.3 ± 12.3%
GVW	<u>+</u> 10 %	$-1.0 \pm 7.5\%$	$-1.8 \pm 8.6\%$
Speed	<u>+</u> 1 mph	$-0.5 \pm 1.1 \text{ mph}$	-0.2 ± 1.2 mph
Axle spacing	<u>+</u> 0.5 ft	-0.1 ± 0.2 ft	-0.1 ± 0.1 ft

From Table 6-2, it can be seen that all weights are underestimated consistently throughout the entire temperature range. Variability appears to be greater at the high end of the temperature range for all weights.

Figure 6-5 shows the distribution of GVW Errors versus Temperature by Truck. The equipment appears to produce a slight underestimation of GVW for the golden truck (squares) over the observed temperature range. For the partial truck (diamonds), the equipment appears to estimate with reasonable accuracy at the lower temperatures, and underestimate at the higher temperatures. The variability in error for both trucks appears to be similar over the entire temperature range.

GVW Errors vs. Temperature by Truck

Figure 6-5 Pre-Validation GVW Percent Error vs. Temperature by Truck – 200200 – 17-Apr-2007

Figure 6-6 shows the relation between steering axle errors and temperature. This graph is included due to the frequent use of steering axle weights of Class 9 vehicles for autocalibration. This site does not use auto-calibration. The steering axles in this graph are associated only with Class 9 vehicles.

The figure shows that steering axle weights are generally overestimated by the equipment at the lower end of the temperature range, and underestimated at the higher end of the temperature range. Variability in error appears to be greater at the higher end of the temperature range when compared to lower end.

Steering Axle Errors vs. Temperature

Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group – 200200 – 17-Apr-2007

6.2 Speed-based Analysis

The speed groups were divided as follows: Low speed -53 to 59 mph, Medium speed -60 to 67 mph and High speed -68+ mph.

Table 6-3 Pre-Validation Results by Speed Bin – 200200 – 17-Apr-2007

Element	95% Limit	Low Speed 53 to 59 mph	Medium Speed 60 to 67 mph	High Speed 68+ mph
Steering axles	<u>+</u> 20 %	$0.5 \pm 14.5\%$	$-2.6 \pm 15.6\%$	$-7.6 \pm 23.3\%$
Tandem axles	<u>+</u> 15 %	$0.3 \pm 6.5\%$	$-2.3 \pm 11.5\%$	$-1.5 \pm 14.5\%$
GVW	<u>+</u> 10 %	$0.3 \pm 5.2\%$	$-2.4 \pm 9.4\%$	$-2.6 \pm 9.6\%$
Speed	<u>+</u> 1 mph	$-0.2 \pm 0.9 \text{ mph}$	$-0.4 \pm 1.4 \text{ mph}$	$-0.3 \pm 1.4 \text{ mph}$
Axle spacing	<u>+</u> 0.5 ft	-0.1 ± 0.2 ft	-0.1 ± 0.1 ft	-0.1 ± 0.1 ft

From Table 6-3, it can be seen that the underestimation and variability in error for all weights generally increases as speed increases.

Figure 6-7 illustrates the tendency of the equipment to overestimate GVW for both trucks at low speeds and underestimate GVW for both trucks at medium and high speeds. Variability in GVW error appears to be greater at medium and high speeds when compared with low speeds.

GVW Errors vs. Speed

Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group - 200200 -17-Apr-2007

Figure 6-8 shows the relation between steering axle errors and speed. This graph is included due to the frequent use of steering axle weights of Class 9 vehicles for calibration. This site does not use auto-calibration. The steering axles in this graph are associated only with Class 9 vehicles.

From the figure, it appears that the equipment generally overestimates steering axle weights at lower speeds, and then increasingly underestimates steering axle weights as speed increases. Variability in steering axle error appears to be reasonably consistent throughout the entire speed range.

Steering Axle Errors vs. Speed

Figure 6-8 Pre-Validation Steering Axle Percent Error vs. Speed Group - 200200 – 17-Apr-2007

6.3 Classification Validation

This LTPP installed site uses the FHWA 13-bin classification scheme and the LTPP classification algorithm. Classification 15 has been added to define unclassified vehicles.

The classification validation is intended to find gross errors in vehicle classification, not to validate the installed algorithm. A sample of 100 was collected at the site. The classification identification is to identify gross errors in classification, not validate the classification algorithm. Video was taken at the site to provide ground truth for the evaluation. Based on a 100 percent sample it was determined that there are 0 percent unknown vehicles and 0 percent unclassified vehicles.

The second check is the ability of the algorithm to correctly distinguish between truck classes with no more than 2% errors in such classifications. Table 6-4 has the classification error rates by class. The overall misclassification rate is 2 percent.

Table 6-4 Truck Misclassification Percentages for 200200 – 17-Apr-2007

Class	Percent	Class	Percent	Class	Percent
	Error		Error		Error
4	N/A	5		6	N/A
7	N/A				
8	0	9	1	10	N/A
11	14	12	0	13	N/A

The misclassification percentage is computed as the probability that a pair containing the class of interest does NOT include a match. Thus if there are eight pairs of observations with at least one Class 9 and only six of them are matches, the error rate is 25 percent.

The percent error and the mean differences reported below do not represent the same statistic. It is possible to have error rates greater than 0 with a mean difference of zero.

Table 6-5 Truck Classification Mean Differences for 200200 – 17-Apr-2007

Class	Mean	Class	Mean	Class	Mean
	Difference		Difference		Difference
4	N/A	5		6	N/A
7	N/A				
8	0	9	-1	10	N/A
11	17	12	N/A	13	0

These error rates are normalized to represent how many vehicles of the class are expected to be over- or under-counted for every hundred of that class observed by the equipment. Thus a value of 0 means the class is identified correctly on average. A number between -1 and -100 indicates at least that number of vehicles either missed or not assigned to the class by the equipment. It is not possible to miss more than all of them or one hundred out of one hundred. Numbers 1 or larger indicate at least how many more vehicles are assigned to the class than the actual "hundred observed". Classes marked Unknown are those identified by the equipment but no vehicles of the type were seen the observer. There is no way to tell how many vehicles of that type might actually exist. N/A means no vehicles of the class were recorded by either the equipment or the observer. The misclassifications of the class 9 and 11 trucks were due to an equipment malfunction where "ghost" axles were being detected as valid axles by the equipment. The malfunction was rectified prior to performing the post-validation classification study. Assistance was provided by the manufacturer's installer remotely. The threshold level of the system was raised which prevented the system from identifying signal ringing as valid axle hits. This adjustment was made prior to completing the pre-validation runs. The actual reporting of "ghost" axles cannot be determined on the basis of this information.

6.4 Evaluation by ASTM E-1318 Criteria

The ASTM E-1318 criteria for a successful validation of Type I sites is 95% of the observed errors within the limits for allowable errors for each of the relevant statistics. If this site had been evaluated using ASTM E-1318-02 it would not have met the conditions for a Type I site exclusive of wheel loads. LTPP does not validate WIM performance with respect to wheel loads.

Table 6-6 Results of Validation Using ASTM E-1318-02 Criteria

	Limits for Allowable	Percent within	
Characteristic	Error	Allowable Error	Pass/Fail
Single Axles	± 20%	92.5%	Fail
Axle Groups	± 15%	98.8%	Pass
GVW	± 10%	95%	Pass

6.5 Prior Validations

The last validation for this site was done October 31 to November 1, 2006. It was the first validation of the site. The site was producing research quality data. Figure 6-9 shows the GVW Percent Error vs. Speed for the post validation runs. The site was validated with two trucks. The "Golden" truck was loaded to 77,290 lbs. The "partial" truck which had an air suspension on both tandems was loaded to 64,850 lbs.

GVW Errors by Speed Group

10.0% 5.0% 0.0% 45 55 60 65 70 Low Speed Medium speed High speed High speed

Figure 6-9 Last Validation GVW Percent Error vs. Speed – 200200 – 31-Oct-2006

Table 6-7 shows the overall results from the last validation. It should be noted that will the bias was essentially the same, the variability of the errors nearly doubled from the previous visit.

Table 6-7 Last Validation Final Results – 200200 – 31-Oct-2006

SPS-1, -2, -5, -6 and -8	95 %Confidence	Site Values	Pass/Fail
	Limit of Error		
Steering axles	±20 percent	$-4.8 \pm 7.7\%$	Pass
Tandem axles	±15 percent	$-1.1 \pm 5.8\%$	Pass
Gross vehicle weights	±10 percent	$-1.6 \pm 4.6\%$	Pass
Speed	<u>+</u> 1 mph [2 km/hr]	$0.0 \pm 1.4 \text{ mph}$	Fail
Axle spacing	<u>+</u> 0.5 ft [150 mm]	$0.0 \pm 0.1 \text{ ft}$	Pass

Table 6-8 has the results at the end of the last validation by temperature. Cloudy weather conditions resulted in a very narrow range of temperatures during that test period. Through the current validation the equipment has been observed at temperatures from 52 to 94 degrees Fahrenheit.

Table 6-8 Last Validation Results by Temperature Bin – 200200 – 31-Oct-2006

Element	95% Limit	Medium Temperature 48 to 61 °F
Steering axles	<u>+</u> 20 %	$-4.8 \pm 7.7\%$
Tandem axles	<u>+</u> 15 %	$-1.1 \pm 5.8\%$
GVW	<u>+</u> 10 %	-1.6 ± 4.6%
Speed	<u>+</u> 1 mph	$0.0 \pm 1.4 \text{ mph}$
Axle spacing	<u>+</u> 0.5 ft	$0.0 \pm 0.1 \text{ ft}$

Table 6-9 has the results of the prior post validation by speed groups. It can be seen that the equipment estimated tandem axle weights and GVW reasonably well at the lower speeds. For steering axles, the equipment tends to underestimate the weights at all speeds, and by a higher degree at medium and high speeds. Variability in tandem axle weight and GVW errors increases as speed increases. Steering axle variability is slightly greater at medium and high speeds when compared with low speeds.

Table 6-9 Last Validation Results by Speed Bin – 200200 – 31-Oct-2006

Element	95% Limit	Low Speed mph	Medium Speed Mph	High Speed mph
Steering axles	<u>+</u> 20 %	$-2.9 \pm 6\%$	$-7.7 \pm 8.3\%$	$-4.4 \pm 7.4\%$
Tandem axles	<u>+</u> 15 %	$0.2 \pm 4.3\%$	$-1.7 \pm 5.8\%$	-2 ± 7.1%
GVW	<u>+</u> 10 %	$-0.3 \pm 2.7\%$	$-2.6 \pm 3.7\%$	$-2.4 \pm 6.3\%$
Speed	<u>+</u> 1 mph	$0.1 \pm 1.3 \text{ mph}$	$-0.2 \pm 1.6 \text{ mph}$	$0.1 \pm 1.7 \text{ mph}$
Axle spacing	<u>+</u> 0.5 ft	$0.0 \pm 0.2 \text{ ft}$	$0.0 \pm 0.1 \text{ ft}$	-0.1 ± 0.1 ft

7 Data Availability and Quality

As of April 17, 2007 this site does not have at least 5 years of research quality data. Research quality data is defined to be at least 210 days in a year of data of known calibration meeting LTPP's precision requirements.

Data that has validation information available has been reviewed in light of the patterns present in the two weeks immediately following a validation/calibration activity. A determination of research quality data is based on the consistency with the validation pattern. Data that follows consistent and rational patterns in the absence of calibration information may be considered nominally of research quality pending validation information with which to compare it. Data that is inconsistent with expected patterns and has no supporting validation information is not considered research quality.

The amount and coverage for the site is shown in Table 7-1. The value for months is a measure of the seasonal variation in the data. The indicator of coverage indicates whether day of week variation has been accounted for on an annual basis. As can be seen from the table none of the years have a sufficient quantity to be considered complete years of data. Together with the previously gathered calibration information it can be seen that at least 5 additional years of research quality data are needed to meet the goal of a minimum of 5 years of research weight data.

Table 7-1 Amount of Traffic Data Available 200200 – 17-Apr-2007

Year	Classification	Months	Coverage	Weight	Months	Coverage
	Days			Days		
1992	191	9	Full Week	79	4	Full Week
1993	70	5	Full Week	51	4	Full Week
1994	104	4	Full Week	4	1	Weekdays
						and
						weekend
						days

GVW graphs and characteristics associated with them are used as data screening tools. As a result classes constituting more that ten percent of the truck population are considered major sub-groups whose evaluation characteristics should be identified for use in screening. The typical values to be used for reviewing incoming data after a validation are determined starting with data from the day after the completion of a validation.

Class 9s and Class 5s constitute more than 10 percent of the truck population. Based on the data collected from the end of the last calibration iteration the following are the expected values for these populations. The precise values to be used in data review will need to be determined by the RSC on receipt of the first 14 days of data after the successful validation. For sites that do not meet LTPP precision requirements, this period may still be used as a starting point from which to track scale changes.

Table 7-2 is generated with a column for every vehicle class 4 or higher that represents 10 percent or more of the truck (class 4-20) population. In creating Table 7-2 the following definitions are used:

- o Class 9 overweights are defined as the percentage of vehicles greater than 88,000 pounds
- o Class 9 underweights are defined as the percentage of vehicles less than 20,000 pounds.
- o Class 9 unloaded peak is the bin less than 44,000 pounds with the greatest percentage of trucks.
- o Class 9 loaded peak is the bin 60,000 pounds or larger with the greatest percentage of trucks.
- o For all other trucks the typical axle configuration is used to determine the maximum allowable weight based on 18,000 pounds for single axles and 34,000 pounds for

- tandem axles. A ten percent cushion above that maximum is used to set the overweight threshold.
- o For all other trucks in the absence of site specific information the computation of under weights assumes the power unit weighs 10,000 pounds and each axle on a trailer 5,000 pounds. Ninety percent of the total for the unloaded configuration is the value below which a truck is considered under weight.
- o For all trucks other than class 9s that have a bi-modal distribution the unloaded peak is defined to be in a bin less than or equal to half of the allowable maximum weight.
- o For all trucks other than class 9s that have a bi-modal distribution the loaded peak is defined to be in a bin greater than or equal to half of the allowable maximum weight.

There may be more than one bin identified for the unloaded or loaded peak due to the small sample size collected after validation. Where only one peak exists, the peak rather than a loaded or unloaded peak is identified. This may happen with single unit trucks. It is not expected to occur with combination vehicles.

Table 7-2 GVW Characteristics of Major sub-groups of Trucks – 200200-18-Apr-2007

Characteristic	Class 5	Class 9
Percentage Overweights	0.0	0.0
Percentage Underweights	2.9	0.0
Unloaded Peak		36,000 lbs
Loaded Peak		80,000 lbs
Peak	12,000 lbs	

The expected percentage of unclassified vehicles is 2.1%. This is based on the percentage of unclassified vehicles in the post-validation data

Figure 7-1 through Figure 7-3. These are based on data collected immediately after the validation and may not be wholly representative of the population at the site. They should however provide a sense of the statistics expected when SPS comparison data is computed for the Post-Validation Sheet 16.

Figure 7-1 Expected GVW Distribution Class 9 – 200200 – 18-Apr-2007

Figure 7-2 Expected GVW Distribution Class 5 – 200200 – 18-Apr-2007

Figure 7-3 Expected Vehicle Distribution – 200200 – 18-Apr-2007

8 Data Sheets

The following is a listing of data sheets incorporated in Appendix A.

Sheet $19 - Truck \ 1 - 3S2$ loaded air suspension (4 pages)

Sheet 19 – Truck 2 – 3S2 partially loaded air suspension tractor and leaf suspension trailer (4 pages)

Sheet 20 – Speed and Classification verification – Pre-Validation (2 pages) Sheet 20 – Speed and Classification verification – Post-Validation (2 pages)

Sheet 21 – Pre-Validation (3 pages)

Sheet 21 – Calibration Iteration 1 – (1 page)

Sheet 21 – Post-Validation (3 pages)

Calibration Iteration 1 Worksheets – (1 page)

Test Truck Photographs (6 pages)

LTPP Mod 3 Classification Scheme 9 (1 page)

Final System Parameters – (1 page)

9 Updated Handout Guide and Sheet 17

A copy of the handout has been included following the next page. It includes a current Sheet 17 with all applicable maps and photographs. There are no significant changes in the information provided in the Pre-Visit Handout Guide.

10 Updated Sheet 18

A current Sheet 18 indicating the contacts, conditions for assessments and evaluations has been attached following the updated handout guide.

11 Traffic Sheet 16(s)

Sheet 16s for the Pre-Validation and Post-Validation conditions are attached following the current Sheet 18 information at the very end of the report.

POST-VISIT HANDOUT GUIDE FOR SPS WIM FIELD VALIDATION

STATE: Kansas

SHRP ID: 0200

1.	General Information	1
2.	Contact Information	1
	Agenda	
	Site Location/ Directions	
5.	Truck Route Information	3
6.	Sheet 17 – Kansas (200200)	4

Figures

Figure 4-1: Site 200200 Location in Kansas	2
Figure 5-1: Truck Route of 200200 in Kansas	3
Figure 6-1 – Equipment Layout of Site 200200 in Kansas	7
Figure 6-2 Upstream_TO_18_20_2.86_0200_04_17_07.jpg	8
Figure 6-3 Downstream_TO_18_20_2.86_0200_04_17_07.jpg	8
Figure 6-4 Cabinet_Exterior_TO_18_20_2.86_0200_04_17_07.jpg	9
Figure 6-5 Cabinet_Interior_Front_TO_18_20_2.86_0200_04_17_07.jpg	9
Figure 6-6 Cabinet_Interior_Back_TO_18_20_2.86_0200_04_17_07.jpg	10
Figure 6-7 Leading_Loop_TO_18_20_2.86_0200_04_17_07.jpg	10
Figure 6-8 Leading_WIM_Sensor_TO_18_20_2.86_0200_04_17_07.jpg	11
Figure 6-9 Trailing_WIM_Sensor_TO_18_20_2.86_0200_04_17_07.jpg	11
Figure 6-10 Trailing_Loop_TO_18_20_2.86_0200_04_17_07.jpg	12
Figure 6-11 Power_Meter_TO_18_20_2.86_0200_04_17_07.jpg	12
Figure 6-12 Service_Post_TO_18_20_2.86_0200_04_17_07.jpg	13
Figure 6-13 Telephone_Pedestal_TO_18_20_2.86_0200_04_17_07.jpg	13
Figure 6-14 Telephone_Drop_TO_18_20_2.86_0200_04_17_07.jpg	14

Page 1 of 14

1. General Information

SITE ID: 200200

LOCATION: Interstate 70 West at M.P. 287.48

VISIT DATE: April 17 and 18, 2007

VISIT TYPE: Validation

2. Contact Information

POINTS OF CONTACT:

Validation Team Leader: Dean J. Wolf, 301-210-5105, djwolf@mactec.com

Highway Agency: Bill Hughes, 785-296-6863, bhughes@ksdot.org

Bill Parcells, 785-291-3846, billp@ksdot.org

FHWA COTR: Debbie Walker, 202-493-3068, deborah.walker@fhwa.dot.gov

FHWA Division Office Liaison: Kirk Fredrichs, 785-267-7299 x326,

kirk.fredrichs@fhwa.dot.gov

LTPP SPS WIM WEB PAGE: http://www.tfhrc.gov/pavement/ltpp/spstraffic/index.htm

3. Agenda

BRIEFING DATE: No briefing has been requested at this time

ON SITE PERIOD: April 17 and 18, 2007

TRUCK ROUTE CHECK: Completed at previous Validation. See Truck Route.

4. Site Location/ Directions

NEAREST AIRPORT: Kansas City International Airport, Kansas City, Kansas.

DIRECTIONS TO THE SITE: 1 mile West of Chapman Interchange, East of Abilene, Kansas

MEETING LOCATION: On site at 9:00am, April 17, 2007

WIM SITE LOCATION: *Interstate 70 West at M.P. 287.48* (*Latitude: 38.9902*⁰ *and Longitude: 97.9992*⁰)

WIM SITE LOCATION MAP: See Figure 4.1

Figure 4-1: Site 200200 Location in Kansas

5. Truck Route Information

ROUTE RESTRICTIONS: None.

SCALE LOCATION: De Bruce Grain, 513 W. First St., Abilene, Kansas. Manager – Brent Martin, phone: (785) 263-7275. Open from 7:30 a.m. to 5:00 p.m. (14.1 miles from site)

TRUCK ROUTE:

East – 2.7 miles to exit 290 on I-70 (Milford Lake Road)

West – 1.1 miles to exit 286 on I-70 (Chapman)

Length of truck turnaround is 3.8 miles

Figure 5-1: Truck Route of 200200 in Kansas

6. Sheet 17 – Kan	sas (200200)		
1.* ROUTEI-70	OMILEPOST287.4	8_LTPP DIRE	ECTION - N S E W
Nearest SPS	SCRIPTION - Grade~ 1_ section upstream of the site m sensor to nearest upstream	2_0_0_2_1	1_2
3.* LANE CONFIC	GURATION		
Lanes in LT	PP direction2	Lane width	_1_2_ ft
Median -	1 – painted 2 – physical barrier 3 – grass 4 – none	Shoulder -	1 – curb and gutter 2 – paved AC 3 – paved PCC 4 – unpaved 5 – none
Shoulder wie	dth _10 ft		
4.* PAVEMENT T	YPEPortland Ceme	nt Concrete	
Date _04/17/07_ Fil	lename: Upstream_TO_18_20 lename: Downstream_TO_18 nme:	_20_2.86_0200	_04_17_07.jpg_
6. * SENSOR SEQU	UENCEloop - w	eighpad – weig	hpad – loop
	NT AND/OR GRINDING _ NT AND/OR GRINDING _ NT AND/OR GRINDING _	/	/ /
	ERSECTIONS driveway within 300 m upstro driveway within 300 m down		
	outinely used for turns or pas		1 Tocation 1 / <u>11</u> distance
9. DRAINAGE (<i>B</i>	ending plate and load cell sys	stems only)	1 - Open to ground2 - Pipe to culvert3 - None
	nder plate4.0 in ccess to flush fines from unde	r system Y / <u>N</u>	

10. * CABINET LOCATION Same side of road as LTPP lane \underline{Y} / N Median $\underline{Y} / \underline{N}$ Behind barrier Y / N Distance from edge of traveled lane _7_2_ ft Distance from system ____7_8_ ft TYPE _____3R_____ CABINET ACCESS controlled by LTPP / STATE / JOINT? Contact - name and phone number _Bill Hughes (785) 296-6863 ____ Alternate - name and phone number Bill Parcells (785) 291-3846 11. * POWER Distance to cabinet from drop ___4_3_8____ ft Overhead / underground / solar / AC in cabinet? Service provider _____ Phone number _____ 12. * TELEPHONE Distance to cabinet from drop ____1__ ft Overhead / underground / cell? Service provider _____ Phone Number_(785) 922-6231____ 13.* SYSTEM (software & version no.)-___iSINC__ Computer connection – RS232 / Parallel port / USB / Other 14. * TEST TRUCK TURNAROUND time __12____ minutes DISTANCE _7.6_mi. 15. PHOTOS **FILENAME** Power Meter TO 18 20 2.86 0200 04 17 07.jpg Power source _Service_Post_TO_18_20_2.86_0200_04_17_07.jpg__ Telephone Pedestal_TO_18_20_2.86_0200_04_17_07.jpg_____ Phone source _Telephone_Drop_TO_18_20_2.86_0200_04_17_07.jpg_____ Cabinet exterior _Cabinet_Exterior_TO_18_20_2.86_0200_04_17_07.jpg_____ _Cabinet_Interior_Front_TO_18_20_2.86_0200_04_17_07.jpg__ Cabinet interior _Cabinet_Interior_Back_TO_18_20_2.86_0200_04_17_07.jpg___ Weight sensors _Leading_WIM_Sensor_TO_18_20_2.86_0200_04_17_07.jpg____ Trailing WIM Sensor TO 18 20 2.86 0200 04 17 07.jpg Classification sensors Other sensors Loop sensors _Leading_Loop_TO_18_20_2.86_0200_04_17_07.jpg_____ Description _Trailing_Loop_TO_18_20_2.86_0200_04_17_07.jpg_____ Downstream direction at sensors on LTPP lane __ Downstream_TO_18_20_2.86_0200_04_17_07.jpg___ Upstream direction at sensors on LTPP lane Upstream TO 18 20 2.86 0200 04 17 07.jpg

	GPS Coordinates: Latitude: 38.9902 ⁰ and Longitude: 97.9992 ⁰
	Amenities:
	West: exit 275 on I-70, Abilene – 12.1 miles from site
	BP Gas, Holiday Inn Express, Super 8, various restaurants
	East: exit 295 on I-70 – 6.9 miles from site
	Motel 6, Phillips 66 Gas, Conoco Gas
	exit 296 on I-70 – 8.5 miles from site
	Comfort Inn, Ramada Ltd, Days Inn, various gas stations & restaurants_
	exit 298 on I-70 – 9.9 miles from site
	Holiday Inn Express, various gas stations & restaurants, Wal-Mart
	Speed Limit – 70 mph
	Site Phone No: 785-922-6420
	Test Truck Recommendations:
	Types of Trucks: Two Class 9s
_Tru	ck 1: Class 9, 72,000 to 80,000 legal limit on gross and axles, air suspension
	Truck 2: Class 9, 45,000 to 55,000 lbs
	Expected Speeds:55, 60, 65 and 70 mph
brol	ken conduit
_cav	ed in trench
A (P)	
MP	LETED BYDean J. Wolf

Sketch of equipment layout

Figure 6-1 – Equipment Layout of Site 200200 in Kansas

Site Map

Figure 6-2: Site Map of 200200 in Kansas

Figure 6-2 Upstream_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-3 Downstream_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-4 Cabinet_Exterior_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-5 Cabinet_Interior_Front_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-6 Cabinet_Interior_Back_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-7 Leading_Loop_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-8 Leading_WIM_Sensor_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-9 Trailing_WIM_Sensor_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-10 Trailing_Loop_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-11 Power_Meter_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-12 Service_Post_TO_18_20_2.86_0200_04_17_07.jpg

Figure 6-13 Telephone_Pedestal_TO_18_20_2.86_0200_04_17_07.jpg

 $Figure \ 6\text{-}14 \ Telephone_Drop_TO_18_20_2.86_0200_04_17_07.jpg$

SHEET 18	STATE CODE	[_2_0_]
LTPP MONITORED TRAFFIC DATA	SPS PROJECT ID	[_0_2_0_0_]
WIM SITE COORDINATION	DATE: (mm/dd/yyyy)	_0_4_/_1_7_/_2_0_0_7_

Rev. 05/25/04

1.		ATA PROCESSING — Down load — State only LTPP read only LTPP download ■ LTPP download and copy to state
	b.	Data Review – □ State per LTPP guidelines □ State – □ Weekly □ Twice a Month □ Monthly □ Quarterly ■ LTPP
	c.	Data submission – □ State – □ Weekly □ Twice a month □ Monthly □ Quarterly ■ LTPP
2.		QUIPMENT — Purchase — ■ State □ LTPP
	b.	Installation — ■ Included with purchase □ Separate contract by State □ State personnel □ LTPP contract
	c.	Maintenance – □ Contract with purchase – Expiration Date □ Separate contract LTPP – Expiration Date □ Separate contract State – Expiration Date ■ State personnel
	d.	Calibration − ■ Vendor □ State □ LTPP
	e.	Manuals and software control – ■ State □ LTPP
	f.	Power – i. Type – ii. Payment – □ Overhead ■ State ■ Underground □ LTPP □ Solar □ N/A

SHEET 18	STATE CODE	[_2_0_]
LTPP MONITORED TRAFFIC DATA	SPS PROJECT ID	[_0_2_0_0_]
WIM SITE COORDINATION	DATE: (mm/dd/yyyy)	_0_4_/_1_7_/_2_0_0_7_

Rev. 05/25/04

	g.	Communication – i. Type – ii. Payment – Landline ■ State Cellular □ LTPP Other □ N/A
3.		AVEMENT – Type – Portland Concrete Cement Asphalt Concrete
	b.	Allowable rehabilitation activities − ■ Always new □ Replacement as needed □ Grinding and maintenance as needed □ Maintenance only □ No remediation
	c.	Profiling Site Markings – □ Permanent ■ Temporary
4.	ON a.	N SITE ACTIVITIES – WIM Validation Check - advance notice required1 □ days ■ weeks
	b.	Notice for straightedge and grinding check1 □ days ■ weeks i. On site lead – ■ State □ LTPP
		ii. Accept grinding – ■ State □ LTPP
	c.	Authorization to calibrate site − ☐ State only ■ LTPP
	d.	Calibration Routine – ■ LTPP – ■ Semi-annually □ Annually □ State per LTPP protocol – □ Semi-annually □ Annually □ State other –

SI	HEET 18	STATE CODE		[_2_0_]
LTPP MONITO	LTPP MONITORED TRAFFIC DATA)	[_0_2_0_0_]
	COORDINATION	DATE: (mm/dd/y	yyy) _0_4	4_/_1_7_/_2_0_0_7_
Rev. 05/25/04 e. Test Vehic i. Tr	ucks –			
	1st – Air suspension 3S2 2nd – _3S2 3rd – 4th –	☐ State☐ State☐ State☐ State	■ LTPP ■ LTPP □ LTPP □ LTPP	
ii. Lo	oads –	\Box State	■ LTPP	
iii. Dr	rivers –	\square State	■ LTPP	
f. Contractor	r(s) with prior successful ex	xperience in WIN	M calibration	n in state:
	Hammell Scale	2		
g. Access to i. Pe	cabinet rsonnel Access – ☐ State only ■ Joint ☐ LTPP			
ii. Ph	ysical Access – ■ Key □ Combination			
h. State pers	onnel required on site –	■Yes □No)	
i. Traffic Co	ontrol Required –	□Yes ■No)	
j. Enforceme	ent Coordination Required	– □Yes ■No)	
	FIC CONDITIONS – I accountability –			
b. Reports –				
c. Other –				
d. Special Co	onditions –			
d. Special Co6. CONTACTS				

Name: ______Roy Czinku _____ Phone:(306) 653-6627_____

Agency: ____IRD/PAT Traffic____

SHEET 18	STATE CODE	[_2_0_]
LTPP MONITORED TRAFFIC DATA	SPS PROJECT ID	[_0_2_0_0_]
WIM SITE COORDINATION	DATE: (mm/dd/yyyy)	_0_4_/_1_7_/_2_0_0_7_

Rev. 05/25/04

b.	Maintenance (equipment) –
	Name:Bill Hughes Phone:(785) 296-6863
	Agency:
c.	Data Processing and Pre-Visit Data –
	Name:Bill Hughes Phone:(785) 296-6863
	Agency:
d.	Construction schedule and verification –
	Name:Bill Hughes Phone: (785) 296-6863
	Agency:
e.	Test Vehicles (trucks, loads, drivers) –
	Name:DeBruce Grain Phone:785-263-7275
	Agency:Brent Martin
f.	Traffic Control –
	Name: Phone:
	Agency:
g.	Enforcement Coordination –
	Name: Phone:
	Agency:
h.	Nearest Static Scale
	Name: De Bruce Grain Location: 513 W. First St., Abilene, Kansa
	Phone: Manager – Brent Martin, phone: (785) 263-7275

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY

*STATE ASSIGNED ID	[]
*STATE CODE	[20]
*SHRP SECTION ID	[0200]

SITE CALIBRATION INFORMATION

1.	* DATE OF CALIBRATION (MONTH/DAY/YEAR) [4/17	/2007]
2.	* TYPE OF EQUIPMENT CALIBRATED WIM	CLASSIFIER <u>X</u> BOTH
	* REASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT EQUIPMENT REPLACEMENT DATA TRIGGERED SYSTEM REVISION X OTHER (SPECIFY) LTPP Validation	RESEARCH TRAINING NEW EQUIPMENT INSTALLATION
	* SENSORS INSTALLED IN LTPP LANE AT THIS SITE (CHBARE ROUND PIEZO CERAMICBARE FLCHANNELIZED ROUND PIEZOLOAD CHANNELIZED FLAT PIEZOX_ INDUCTOTHER (SPECIFY)	AT PIEZO X BENDING PLATES
5.	EQUIPMENT MANUFACTURERIRD/ PAT Traffic	
	WIM SYSTEM CALIBRAT	ION SPECIFICS**
6.**	CALIBRATION TECHNIQUE USED:TRAFFIC STREAMSTATIC SCALE (Y/N)	_X TEST TRUCKS
	NUMBER OF TRUCKS COMPARED	2 NUMBER OF TEST TRUCKS USED
	TYPE PER FHWA 13 BIN SYSTEM SUSPENSION: 1 - AIR; 2 - LEAF SPRING 3 - OTHER (DESCRIBE)	
7.	SUMMARY CALIBRATION RESULTS (EXPRESSED AS MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW	STANDARD DEVIATION3.9 STANDARD DEVIATION8.7
8.	4 NUMBER OF SPEEDS AT WHICH CALIBRATIO	N WAS PERFORMED
9.	DEFINE THE SPEED RANGES USED (MPH)55	60 65 70
10.	CALIBRATION FACTOR (AT EXPECTED FREE FLOW	SPEED) <u>3980</u>
11.*	* IS AUTO-CALIBRATION USED AT THIS SITE? (Y/N) _ IF YES, LIST AND DEFINE AUTO-CALIBRATION	
	<u>CLASSIFIER TEST S</u>	PECIFICS***
12.*	*** METHOD FOR COLLECTING INDEPENDENT VOLUMI VIDEOX_ MANUAL	E MEASUREMENT BY VEHICLE CLASS: PARALLEL CLASSIFIERS
13.	METHOD TO DETERMINE LENGTH OF COUNT	TIME _X NUMBER OF TRUCKS
14.	*** FHWA CLASS 8 <u>0.0</u> FHWA FHWA	ASSIFICATION: A CLASS A CLASS A CLASS
	*** PERCENT "UNCLASSIFIED" VEHICLES: 0.0	
	RSON LEADING CALIBRATION EFFORT: <u>Dean J. Wolf, N</u> ONTACT INFORMATION:301-210-5105	ACTEC rev. November 9, 1999

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY

*STATE ASSIGNED ID	[]
*STATE CODE	[20]
*SHRP SECTION ID	[0200]

SITE CALIBRATION INFORMATION

1. * L	DATE OF CALIBRATION (MONTH/DAY/YEAR) [4/18/	/200/]
2. * T	YPE OF EQUIPMENT CALIBRATED WIM	CLASSIFIER <u>X</u> BOTH
 	EASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT EQUIPMENT REPLACEMENT DATA TRIGGERED SYSTEM REVISION OTHER (SPECIFY) LTPP Validation	RESEARCH TRAINING NEW EQUIPMENT INSTALLATION
 	ENSORS INSTALLED IN LTPP LANE AT THIS SITE (CH_BARE ROUND PIEZO CERAMIC BARE FL_CHANNELIZED ROUND PIEZO LOAD CECHANNELIZED FLAT PIEZO X_INDUCTOTHER (SPECIFY)	AT PIEZO X BENDING PLATES
5. EQ	UIPMENT MANUFACTURERIRD/ PAT Traffic	
	WIM SYSTEM CALIBRAT	ION SPECIFICS**
6.**CA	LIBRATION TECHNIQUE USED: TRAFFIC STREAMSTATIC SCALE (Y/N)	_X TEST TRUCKS
	NUMBER OF TRUCKS COMPARED	2 NUMBER OF TEST TRUCKS USED
	TYPE PER FHWA 13 BIN SYSTEM SUSPENSION: 1 - AIR; 2 - LEAF SPRING 3 - OTHER (DESCRIBE)	
7.	SUMMARY CALIBRATION RESULTS (EXPRESSED AS MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW	STANDARD DEVIATION3.1 STANDARD DEVIATION5.3
8.	4 NUMBER OF SPEEDS AT WHICH CALIBRATIO	N WAS PERFORMED
9	DEFINE THE SPEED RANGES USED (MPH)55	
10.	CALIBRATION FACTOR (AT EXPECTED FREE FLOW	SPEED)4060
11.**	IS AUTO-CALIBRATION USED AT THIS SITE? (Y/N) _I IF YES, LIST AND DEFINE AUTO-CALIBRATIO	
	CLASSIFIER TEST SI	PECIFICS***
12.***	METHOD FOR COLLECTING INDEPENDENT VOLUMI VIDEO _X_ MANUAL	E MEASUREMENT BY VEHICLE CLASS: PARALLEL CLASSIFIERS
13.	METHOD TO DETERMINE LENGTH OF COUNT	TIME X NUMBER OF TRUCKS
14.	*** FHWA CLASS 8 0.0 FHWA FHWA	A CLASS
	*** PERCENT "UNCLASSIFIED" VEHICLES: 0.0	1 CLASS
	ON LEADING CALIBRATION EFFORT: <u>Dean J. Wolf, N</u> TACT INFORMATION:301-210-5105	1ACTEC rev. November 9, 1999

Sheet 19	* STATE CODE 20			
LTPP Traffic Data	* SPS PROJECT ID 02.00			
*CALIBRATION TEST TRUCK # 1 Rev. 08/31/01	* DATE 04-16-67			
PART I. .* FHWA Class 2.* Number of Axles	×			
AXLES - units - lbs / 100s lbs / kg				
Axle Weight Loaded Axle Weight	.* Post-Test Average 6.* Measured Loaded Axle D)irectly or Weight C)alculated?			
A	D / C			
B	D / C			
C	D / C			
D	D / C			
E	D / C			
F	D / C			
GVW (same units as axles)				
*c) Post Test Loa	Test Loaded weight ded Weight ost Test – Pre-test			
GEOMETRY				
3 a) * Tractor Cab Style - Cab Over Engine / Conventional 9. a) * Make: CAT b) * Model:	b) * Sleeper Cab? Y/N			
10.* Trailer Load Distribution Description:				
11. a) Tractor Tare Weight (units):				
b). Trailer Tare Weight (units):				
6420060018_SPSWIM_TO_18_20_2.86_0200_Truck_1_Sheet_19.doc				

	Sheet 19	*STATE_CODE	
	LTPP Traffic Data		0100
	RATION TEST TRUCK # _\	* DATE *O di	3 - 0 - 1
Lev. 08/31/01			v
12 * Axle Spacing – r	nits m / feet and inches / fe	eet and tenths	
iz. Ame opaoms t	into in 7 feet and menes 7 fe	cet and tenins	
A to B 19.10	B to C 4.4	C to D マン・	
	D to E	E to F	
	-	•••	MANUAL AND
Wheelbased (r	neasured A to last)	Computed	
		-	
13. *Kingpin Offset F	rom Axle B (units) + 0 -4-	()	
	(+i	s to the rear)	
SUSPENSION			
Axle 14. Tire Size	15.* Suspension Descript	tion (leaf, air, no. of leaves, t	aper or flat leaf, et
A 11224.5	M Two	topped leaf.	
• •		· · · · · · · · · · · · · · · · · · ·	
C 11 R 24.5	A;r		
D 11R 24.5	Air		
11 12 12 13	Λ		
E 118245	Air		
F			
16. Cold Tire Pressure	s (psi) – from right to left		
Steering Axle	Axle B Axle C	Axle D	
<i>-</i>			Axle E
<i>5</i>			Axle E
			Axle E

* STATE_CODE

Sheet 19

Sheet 19	* STATE_CODE 20
LTPP Traffic Data	* SPS PROJECT ID OZOO
*CALIBRATION TEST TRUCK #	* DATE 64 - 10 - 67

Rev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	Axle B	Axle C	Axle D	Axle E	GVW	
I	II	III	IV	V	V	
	-I	-II	-III	-IV		
V -VI	VI- VII	VII- VIII	VIII- IX	IX,	X	
-V1					XI	
Avg.						

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I		
A + B	п		
A + B + C	III		
A+B+C+D	IV		
A + B + C + D + E (1)	V		
B+C+D+E	VI		
C + D + E	VII		
D+E	VIII		
Е	IX		
A + B + C + D + E (2)	X		
A + B + C + D + E (3)	XI		

Table 3. Axle and GVW computations - post -test

Axle A	Axle B	Axle C	Axle D	Axle E	GVW
I	II	III	IV	V	V
	-I	-II	-III	-IV	
V	VI-	VII-	VIII-	IX`	X
-VI	VII	VIII	IX		
					XI
Avg.					

		Sheet 19		,		TE_CODE	20		
LTPP Traffic Data *CALIBRATION TEST TRUCK #				* SPS PROJECT ID 0200 * DATE 04-17-07					
Rev. 08/31/01									
Table 4 . Axl	e and GVW o	computations	<u></u>						
Axle A	Axle B	Axl	e C	Axle D		Axle E		GVV	V
I	II	Ш		IV		V		V	
	-I	-II		-III		-IV			
$ \mathbf{v} $	VI-	VII-	-	VIII-		IX,		X	
-VI	VII	VIII		IX					
								XI	
Avg.									
Table 5. Raw	data – Axle s	scales – pre-te	est						
Pass	Axle A	Axle B	Axle C	Axle D		Axle E	Axle F		GVW
1	12600	167 Abo	16740	llot	CZ	16750			19580
2	12640	16760	16760	167	00	16700			79560
3	12460	16780	16780	167	4	ししててひ			79560
Average	12570	16760	16760	167	40	1670			79570
day poct	12260		ivaio	1675	7	16750			79180
Table 6. Raw	data – Axle s	scales – 🚜	2 000						
Pass	Axle A	Axle B	Axle C	Axle D		Axle E	Axle F		GVW
1	12400	16620	16620	PPOI	٥	16440	***************************************		78580
2	12120	<u> </u>	(७७७)	Thal	0	<u> UFAU</u>	·		78620
3	12260	16690	16690	1647	0	16470			18781
Average	12260	16710	16710	1646		16460			78590
lan 2 post	12160	16620	16620	16590)	14590			78580
Table 7. Raw	data – Axle s	scales – post-t	test						
Pass	Axle A	Axle B	Axle C	Axle D		Axle E	Axle F		GVW
I									
2									
3									
Average									
	^ -								
Measured By	May			Verified 1	Ву				
6420060018_SF	SWIM_TO_18	_20_2.86_0200	_Truck_1_Sheet	_19.doc					

Sheet 19		<u>20</u>
LTPP Traffic Data		<u>0290</u>
*CALIBRATION TEST TRUCK # 2, Rev. 08/31/01	* DATE OA	-18-07
PART I.		Hallet-130
1.* FHWA Class 2.* Number of Axles	5	
AXLES - units - lbs / 100s lbs / kg		
3. Empty Truck Axle Weight 4.* Pre-Test Average Loaded Axle Weight	5.* Post-Test Average Loaded Axle Weight	6.* Measured D)irectly or C)alculated?
Α		D / C
В		D / C
C		D / C
D		D / C
E		D / C
F		D / C
GVW (same units as axles)		
*c) Post Test Lo	e-Test Loaded weight oaded Weight Post Test – Pre-test	
GEOMETRY		
8 a) * Tractor Cab Style - Cab Over Engine / Conventional	b) * Sleeper Cab?	YN
9. a) * Make: Kenlorth b) * Model:	**************************************	
10.* Trailer Load Distribution Description:		
		daqddddagaddgadagadagadagagagagagagag
11. a) Tractor Tare Weight (units):		
b). Trailer Tare Weight (units):		
6420060018_SPSWIM_TO_18_20_2.86_0200_Truck_2_Sheet_19.do	ос	

	Sheet 1	Q	*STATE CODE 2	n n		
***************************************	LTPP Traffic Data			* SPS PROJECT ID OZOO		
	CALIBRATION TE	······································		<u> </u>		
ev. 08/31/01				,		
2.* Axle Spacir	ng – units m	/ feet and inches / feet	and tenths			
to B	<u> </u>	oC <u>4-4</u>	C to D 31.4	Address of the Control of the Contro		
	D t	oE 4.1	E to F			
Wheelbas	sed (measured A	to last)	Computed	***************************************		
3. *Kingpin Of	set From Axle E	$\frac{4 + 1 \cdot 4}{(+ \text{ is to})}$	()	_		
		(+ is to	the rear)	_		
USPENSION						
Axle 14. Tire	Size 15.**	Suspension Description	(leaf, air, no. of leaves	, taper or flat leaf, et		
A 11R24	کت	Dir 3	Japaned 10	gellan.		
B 11/2 24	4.5	Air	₹			
C 11 R 2	ŧ. ·	Aix				
D 75R2		3 Larger E				
	5R24.	3 tapered	l and the			
	214.5	_ 3 regeles	the flesh			
F						
F	 essures (psi) – fra	om right to left				
F	essures (psi) – fre	om right to left				
F 6. Cold Tire Pre	7	_	Axle D			
F 6. Cold Tire Pre	7	_	Axle D			
F 6. Cold Tire Pre	7	_	Axle D			
F 6. Cold Tire Pre	7	_	Axle D			
F 6. Cold Tire Pre	7	_	Axle D			

Sheet 19	* STATE_CODE	20
LTPP Traffic Data	* SPS PROJECT ID	0200
*CALIBRATION TEST TRUCK # 🔑	* DATE	64-18-5T

Rev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	Axle B	Axle C	Axle D	Axle E	GVW	
I	II	Ш	IV	V	V	
	-I	-II	-III	-IV		
V	VI- VII	VII- VIII	VIII- IX	IX	X	
-VI					XI	
Avg.					4 2.4	

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I		
A + B	II		
A + B + C	Ш		
A + B + C + D	IV		
A + B + C + D + E (1)	V		
B+C+D+E	VI		
C + D + E	VII		
D+E	VIII		
E	IX		
A + B + C + D + E (2)	X		
A + B + C + D + E (3)	XI		

Table 3. Axle and GVW computations - post -test

Axle A	Axle B	Axle C	Axle D	Axle E	GVW	
I	II	Ш	IV	V	V	
	-I	-II	-III	-IV		
V	VI-	VII-	VIII-	IX'	X	
-VI	VII	VIII	IX			
					XI	
Avg.						

		Sheet 19			* STATE CODE 2.0								
		PP Traffic Data ION TEST TRU	JCK# 9		* SPS PROJECT ID () 200 * DATE () 4 - 1 8 - 0 7								
Rev. 08/31/01	We had had he had he had he	ACOUNT ARC		L		h. A	14-16	<u> </u>	3				
Γable 4 . Ax	le and GVW o	computations	NW.										
Axle A	Axle B	Axl	e C	Axle D		Axle E		GVV	V				
	п	III		ΙV		V		V					
	-I	-11		-III		-IV							
7	VI-	VII-		VIII-		IX,		X					
VI	VII	VIII		IX									
								XI					
Avg.													
									······································				
Table 5. Ray	w data – Axle :	scales – pre-t	est										
ass	Axle A	Axle B	Axle C	Axle I)	Axle E	Axle F	1	GVW				
	10660	14870	14870	133					61465				
	10740	14790	14190	1329	70	13290			690				
j	10820	14740	14740	133	90	13590			67080				
Average	10740	14800	14860	133	CO	BSCO			67050				
clan post	10520	14780	14780	132	10	13210			0629D				
ŧ	v data – Axle :	scales –											
Pass	Axle A	Axle B	Axle C	Axle E		Axle E	Axle F	,	GVW				
	11160	14870	14870 14870	129	70 H	12970 16470			(da185				
	10860	14900	14900		TO.	12910			6648				
	1104-0	14910	14910			12960			ರಿ ೧೯೨೦				
Average	11000	14890	14890	1299		12950			44680				
lan 2 post	0050/	१५९१०	149,0	129					66340				
•	w data – Axle	scales – post-	test						N. T.				
Pass	Axle A	Axle B	Axle C	Axle D)	Axle E	Axle F		GVW				
,													
,													
Average													
		L	<u> </u>				l						

 $6420060018_SPSWIM_TO_18_20_2.86_0200_Truck_2_Sheet_19.doc$

			Sheet 20		***	* STATE	CODE	2 (\supset	
	-		PP Traffic l				OJECT_II			
			cation Chec	ks * /	of* <u>Z</u>	* DATE		<u> </u>	<u>'17/2</u>	Loo I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rev. 08/. WIM	31/2001 WIM	WIM	Obs.	Obs	WIM	TYTE	TYYTA #	01	T 01
	speed	class	Record	Speed	Class	speed	WIM class	WIM Record	Obs. Speed	Obs Class
				L		or		1.00010	Броса	Class
	<u>68</u>	9	23952	70	0	67	9	24250	(a)	5~{
	67	5	23956	68	5	64	9	242840	ψS	9
	62+	9	23963	65	<u> </u>	ا توا	1-2	24310	68	ÎZ.
1	64	91	2376r	65	O _j	46	G)	24317	ع کا	9
	62	8	24013	69	23	64		24340	485	e li
-	62_	9	24018	6 3	9	७५	11	24389	65	1.1
	70	5	22619		S	<u>68</u>		24390	68	S
	65	9	24023	45	9	67	چة ا	24408	(CE)	53
	64	9	24047	6 5	9	64	9	24411	<u>65</u>	9
	<u>69</u>	S	24067	70	5	7		24420	73	7
	<u>67</u>	9	24072	69	= 3	65	<	24425	65	3
é	<u>eb</u>		24015	66	9	63	_3	24427	<u> </u>	9
4	71	<u> </u>	24094	72	9	59	4	24430	<u>6a</u>	9
	72	9	24099	73		64	4	24468	65	9
1		9	24101	68	9	C F	9	24-44-9	<u> </u>	
1,7	<u>(29)</u>	01	24100	69	9	·T *>	<u></u>	24476	73	Q .
	63	1)	24116	65	11	હિંદ	67	24477	70	
	64	<u> </u>	24-124	64	9	64	9	24480	66	9
	54	<u> </u>	24132	54	9	70	9	24491	770	- 5
)	<u>55</u>	<u> </u>	24135	55	9	61	11	24495	62	11
	69	9	24171	69	7	<u> 682</u>	G)	20505	70	9
	67		24179	<u>89</u>	9			2490	71	<u> </u>
	<u>67</u>	<u> </u>	24189	09	<u></u>	7.7	3	24545	73	9
	<u> </u>	<u>N</u>	24197	65		(e (e	<u> </u>	24557	רט	9
L	65		24203	64	9	70	3	24555	70	9
K	tecorded	Uy	<u> </u>	Dire	ctión <u>J</u>	_ Lane _{	Ime fi	com <u>Piso</u>	to	43

	LI	PP Traffic I	Data	······································		OJECT II)	02.	() ()
		cation Chec	ks * 2	of*Z	* DATE		041		-007
	1/2001		Ola m	Ol-	T 33773 #	33.773. #	33773 A	01	01
WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class	WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class
			~				1000	op ou	Class
Vo Z		24563	6000	9	70		253CD		9
69	-8	24566	75	9	77	Câ;	25359	<u> </u>	Sq
To	9	24568	~ [/	9	الحكول	711	25496	GE .	£ l
67	~ T	P J245	LOFS	9	<u> </u>	7	25503	Le a	- CJ
_ ८ €	9	24570	69	9	70	9	25557	70	4
Cart	9	24571	<u> </u>	9	<u>(03</u>	<u> </u>	25513	65	<u>-</u>
427		<u> 2458 2</u>		<u> </u>	71()	****	25515		9
58		2483	54	9	LES	=1	25517	<u> 48 </u>	Ğ
67	9	25027	Le T	<u> </u>	(69	9	2552	<u> </u>	<u> </u>
GS	<u> </u>	25029	68		123	<u> </u>	2552	1-1-1-2	9
72	<u> </u>	25031	73	9	72		6222	and and	3
(eE		25034-	<u> </u>	<u> </u>	<u> 63</u>	<u> </u>	2553	<u> </u>	9
		25037	<u> 49</u>	9	<u> </u>		25537	<u>69</u>	
Q D	<u> </u>	25043	59		(v %)		2(553	<u>66.</u>	Sq.
<u> </u>		25050	62	9	<u> </u>		25559	43	<u> </u>
70	a,	25058	<u> </u>	9	"I4-	9	7,002	74	5}
Let	6	25059	<u>65</u>	eg .	13	8	25572	73	9
ace	9	25066	රිට	3	<u> 49</u>		25573	70	9
73	9	25570	73	sa _l	70	eq.	257b	71	- Gy
42	9	25072	64	جم الم	<u>(</u> 8	9	25563	Coch	S
9	<u> </u>	25321	70	<u> </u>	<u> 68</u>	8	2557c		8
64	<u>q</u>	25324a	65	9	60	9	255°7 C	<u> </u>	Ġ.
<u>le 5</u>	<u> </u>	25321		· cj	<u>64</u>	.=}	25598	44	9
<u> </u>	9	25342	67	9	47	9	25601	68	
67	<u> </u>	25347	67	<u> </u>	<u> </u>	5	25604	<u> </u>	5
Recorded	by	- Landy	, Dire	ection <u></u>	Lane _	I ime f	rom 11:45	to <u></u>	145

* STATE_CODE

Sheet 20

		Sheet 20			* STATE	CODE			2,5
		PP Traffic l			*SPS PR	OJECT_L	D		1200
		cation Chec	ks * 👔	of* フ	* DATE		6 V (11812	<u> 2857</u>
	31/2001					r			···
WIM	WIM	WIM	Obs.	Obs	WIM	WIM	WIM	Obs.	Obs
speed	class	Record	Speed	Class	speed	class	Record	Speed	Class
				i i	3 6"				
<u> </u>	6	29928	TO	4	65	2	30132	ias	9
64	<u> </u>	24530	ley	9	Cr	</td <td>30188</td> <td>70</td> <td>9</td>	30188	70	9
64	9	29932	(04	9	69	9	30195	70	5)
le it	9	29942	64	9	66	વ	30202	66	9
70	57	29945	75	Ç.	62	٤	30206	62	8
<u> 12.72</u>		29947	<u>le t</u>	LO	70	12	3626	69	12.
64	11	29954	64	11	72	9	30216	7 4	9
Leo	Sign	29958	<u> 60</u>		67	ති	35217	68	8
<u> </u>	9	29963	<u>LO</u>	9	CE S	Yan Yan	30221	V.E.	5
T	758	29991	***************************************	8	79	Ÿ	30259	74	9
70	5	Z9997	70	S	njarang (9	30264	~~	9
M H	3	30002	73		78	9	30270	79	9
65	4 1	30037	·e(e	()	Q2	-	36275	63	9
70	چک	30085	70	C ₁	Ce 9	9	302802	69	9
70	4	30088	70	9	72	Same	30290	, 72	e,
73	5	300°10	7 2	\$	70	=====	30292	7/	9
74	9	30098	74	9	62	11	302514	63	
	۵.	30099	774		64	57	30297	64	tie,
(e.S	11	30102	<u>ک</u> ی	11	67	57	30299	(OF-	9
49	Sum	30104	70		64	S	30303	66	S
70	=	30108	~7 0	Ĝ	65	<u> </u>	2020	66	2
<u></u>	**************************************	3=103	-2 ()	<u> </u>	62	C.J	30211	61	9
6	1.1	30111	100	11	60	<u> </u>	30315	60	9
7.0	3	30116	- C - T	9	ري ع	3	30342	70	- 4
67	9	30124	68	9	68	4	30347	69	<u> </u>
Recorded	by	-bir	Dire	ection 🛂	_ Lane _1	Time	from 1018,	<u>to 1</u>	1:48

		Sheet 20			* STATE	CODE			20
	······································	TPP Traffic I			·	OJECT_II			1200
	id Classifi 31/2001	ication Chec	ks * <u>2</u>	of* 2	* DATE	·····	<u> </u>	<u>/18/2</u>	<u> </u>
WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class	WIM speed	WIM	WIM Record	Obs. Speed	Obs Class
Com	<u> </u>	30595	67	a _j	67	q	30816	68	a
Le8	9	30605	65	9	66	9	30896	70	Si
72-	9	30000	77_	9	67	6	30914	68	6
69	9	30625	<u> 70</u>	9	(GE)	9	30919	68	9
7/3	3	30630	73	9	64	9	30954	65	Ç.
64	<u> </u>	301037	64	ા	<u>68</u>	<u> </u>	30956	Ç0- 2 5,	8
70	9	13 class		9	QS	8	30968	66	ව
72	3	30046	12	5	رت	9	30981	68	9
64	lí	13ae 47	les	e e e e e e e e e e e e e e e e e e e	69	4	30990	70	9
<u> Ce Es</u>	9	30650	<u> </u>	<u> </u>			30991	70	9
12	57	30654	123	9	64	0	30992	64	
70	9	30727	70	9	68	9	<u> 310el</u>	<u>(ee</u>	9
67	<u></u>	30731	UL	9	70		S1002	<i></i> /	9
(e)	<u> </u>	30737	<u>UB</u>	54	59	<u> </u>	31008	60	9
	17	30135		12	69		31012	69	9
63		30183	63	4	70		31040	70	
1.'')	G)	3.5784	77	9	67	9	31091	$-\omega_{\perp}$	
61	9	3575 9	60	9	71	A	31057	- xound com	9
60	S)	50791	61	G	<u> </u>	43	31059	105	G.
13	5	36196	~] 3	G	17.	<i>ح</i> ال	31570	13	C)
(_Q 3	q	30178	62	Kanif	<u>(02)</u>		31073	63	<u> </u>
72	6	30803	73	5	68	3	31074	<u>(37</u>	
70	3	S _{sec} a ₁	7	5)	72_	<u> </u>	71079		9
42	. Eusig	35809	68	4	71	<u> </u>	31380	12	
69	9 1	30015	<u>ve</u>	<u> </u>	10	9	31082 from 42,30	62	9
Recorded	by	<u>NAU</u>	Dire	ction	Lane _	fTime f	from <u>1213</u> 6	<u>⊃</u> to <u>z:</u>	<u>15_</u>

	Sheet 21 LTPP Traffic Data				
WIM System Test Truck Records	ds 1 of 2	* DATE	140	17/200	
Pass Time Record Wil	WIM Axle A Axle B Axle C A Speed weight. weight.	Axle D Axle E Axle F weight	GVW A-B space	B-C C-D space	D-E E-F space space
1 91.00 C3918 S	2 61 86 857 7	100	78.7 19.2	4.3 80.(9
3925	1/2 4/5	4.2 7.4 1.2 6.4 P. 1.3	69-19-6	4.3 31.1	3.9 1.8
2 9.52.53 23963 6	i	2/20 Cast 20 C	<u>ت</u> ښ	4.3 30.1	. V)
2 9.537 23965 64	1.8 2.7 2.8 2.9 2.7 2.8	4-1- 11-6- 6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	68.7	4.2 31.0	60 (
3 10:00 16	27.00 37.00	1 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6	76.3 19.2	4.3 30.1	, Ú
3 10.91.24 Dis 73	4.2 5.3 7.3	69 87 Sic 81	1-61-2-19	4.2 31.0	on on
X	100 T 100 S 100 T	1/2	5 61 9.4	4.3 30.l	4 0
4 100 20135 SX	12 12 12 12 12 12 12 12 12 12 12 12 12 1	4 7:0 0:8 8:4 0:8	197	43 312	0 3
1 10th 24201 62	10/2 t/2 t/2 t/2 t/2	4	800 Fr	<u> </u>	j
2 100,000 24211 64	الرواية الرواي	15 Th	[E	4 2 31 0	(m
1 6 82/2/80 J	6.3 8.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8		79.2 19.5	4.2 30.1	→ ✓;
5 to 3 to	A S 5.7 2.2	1.2 S.1 S.4 8 8			- 100 - 100
7 N. J. 243 Lr. 54	6.7 6.9 8/5	4.2 8.2		n /*3	9
7 11.09.11.3	5.8 El 8.4	11 15	<u>5</u>	45 350	S M
7. 45.00 0.000	5.3 T.3 T.8 S.3 T.8 S.3 T.5		, manuari (2)	4.2 30.4	р С
8 03.72436 S	5.2 6.9 7.3 49 6.9 6.3		68.7 Kg.7 4	4.3 30.9	الم فر
	Checked by	3			

X

6420060018_SPSWIM_TO_18_20_2.86_0200_Pre_Shect_21.doc

		<u>, </u>	<u> </u>	7	1	>	>	<u> </u>	<u> </u>	\ 	Į.	<u> </u>	;>	>	, s	1/4	 	
	E-F space																	
	D-E space	4.0	w W	3 0	Ø M	4 0	7		ď	4	4	0	, O	5	N.	\ \V.	:	
2000	C-D space	30.0	n K	i i m	₩ . U	1,08	ار ن	0000	2 0 2 8	Ŕ	<u>w</u>	000	V	\ \frac{1}{2}	O	30°C		
	B-C space	2. ‡7	. 4	, 4	نب. سان	4	3	1	,	4	***************************************	4		i,	5	7		
04/	A-B space	2, 81	. 5	6.2	ā.	ŝ	a i	7	و ح	<u>a</u>	6	<u>a</u>	į.		5	2		
CODE JECT ID	GVW	623	le Let	89%	rs)	ů Ž	29.65		673	r Ø	23	i.	79	r Ž	73	le c		
* STATE CODE *SPS PROJECT * DATE	Axle F weight																	
* ST * * SP * D,	Axle E weight.	n/0	آباد . ماد	1.70	21	The The		3/5			5/a		:10 :10		3/a	ئى/ن ئى/ئ	:	
	Axle D weight.	<u> </u>	1		مراز	2/0	44	C/a	ē/e	2/6	2/3		6/v 2/v	S. J. J.	70	a/3 0,000		8
	Axle C weight.	00 / 00 3 / L	j/o	4.0	オナ	1. /a.	in the	3/5	آران. تارن	0) (0)	7.2	-/\w\overline{\alpha}	4/2	3/2	3/t	N.		
, , , , , , , , , , , , , , , , , , , 	Axle B weight.	27/00 51/3	1/a			-/0	67	4. 8/6			2/L	4/2	1, (i) (i) (ii) (ii) (ii) (ii) (ii) (ii)	·····	4	%/2		
1. of	Axle A weight.	t. Jo	:13	76	Syle.		3/2			وَ إِنِّهِ الْمُ	5/2 8/5/8	64/2	قَالَة	فَرُجُ	2/4 2/60	2 /3		
t Data	WIM	-ر ور	Œ	. 2	Ŋ	29	63	23	C	. X	53	5	3	40	Se de	4 V		
Sheet 21 LTPP Traffic Data Test Truck Records	Record No.	24527	24535	2 2 3	183	9123	25274	2534¢	28.83	24.157 7	***>7	883	100	12121	13.00 St	zsink		`
	Time	37.38.7	150.25 20.25 20.25	6.22 2.22	Ka; 246, EX	X 3000	250,14	14.89.43 18.93.43		7	4.01.7	72.53	47,000	9.95 ₂	A C	3 , 90.5	Ļ	()
WIM System	Pass	σ	σ	0	()	issue	,,,,	2	2	Š		neder.	The same	Ū	Ş			
	Truck		N	, marine	2	produceron	را	CHESTS	ار.	~	7	المعتبر تتديم	7	, jangan Sa	Z	2		,,,,,,
100C/12/80 .xo	Radar Speed	9	<u>ام</u>	r.	ŝ	ر ح	3	Ŋ	ر لا	7	53	£ 2,		する	des.	54		
Dov. 08	Pvmt temp	y 63	,	Š	Ž		702	601	0,0		, , <u>,</u> 3		i as):69		500		
				Ç	52													

Vec., No - 25615 - 25624 マングラン

				표 <u>무</u>	sbace							*								
		7		D-E	space	4	Ø.	4	w 0	7	0.) ÷	o .	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	j c					
ı	1	750	1007	О	space	Ö	0.18	36·0	? N)	7.08	\ \frac{1}{2}	ñ	, c	36.1	24.9					
			7 1 2	B-C	sbace	4	4.2	7	4.2	;^\ ;*	4.4	9	1	₹ £	4.3					
			140	A-B	space	6	Ţ	ů,	ľ	6	<u>a</u>	4		19.3						· :
i i	a F			GVW	:	7	J S	r To	\$159 9	7 00	9.0		5 5 5 5	0,5	9.1					:
* CTATE CODE	*CDC DROTECT IN	TUNIT	VTE	Axle F	Melgni															
* CT	*CD(110	* DATE	Axle E	weigni.	2/2. 1/3:	~/@	2,0 2,0 4	0/01 00/6	0\(\int\)0\(\int\)0\(\int\)	9\Q) Q)\Q)	ر <u>د</u> <u>د</u> کرد	1/4	1/20	2/2					
				Axle D		<u>"</u>		-1/3 -1/3	i h		6/20 17	N.		2/5	6/2					
				Axle C		7	7/2	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(h)/a				7,0	-	0/30					ΔQ
			8	Axle B			?\? !	0/00 0/00	20/L			7/5			から		******			Checked by
			s of	Axle A	W CIGIN			0.50 e/o	4/4		No.	6/5/A	ļ							
	Data	- Turner	ords	WIM		3	3	2	<u>0</u>		** **	, ,	\$0	- 55	72					
Sheet 21	LTPP Traffic Data	Transfer T	Lest Truck Records	Record	j	12867	35.	- 25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 923		i Lesi	67.00	76953 (24	5173	25426	•				
	T.I	F		Time		8,00	C. 32:52	(2) (2) (2) (3) (4) (4) (4) (4)	16.40 S	2. C.	10.00 V	7.32.9	3,5; 3,7;	3.552 25173	できずか					Ġ
,		TINKO	w.IM System	Pass		9	,-nox	,	Ø	<u>Ø</u>	T	0_	S	5	.,					
			٨	Truck		**renditor		GZN PREST Å	Ŋ		N	accounter.	Ŋ	-cannon-co.	-					T
			31/2001	Radar	3	Ç	\$	ę	Ç	な	ţ,	S	4	55	2					ed by
			Dev. 08/31/2001	Pvmt		09.5	695	0.2	0.74	7.0h	Sign	Š	20.5	Sign	G. S.					Recorded by

·	1	<u>.</u>	1	E-F ice space		_Q O	n	į į	0. j	Ç	C	05,	0						
C ~		10) D-E	4	Q M + M	100 A			4	4	<u></u>	4	0	r				
	20	2		ce space	4.2 30.4				チ か り	12 Tr	J	<u> </u>	1						
		00 / 1		ce space			19543	25.04		す	19.4 4.3	 	++						
		40		N A-B space	7.61	0.019.19	4				 	1 a							
* STATE CODE	*SPS PROJECT ID			Jht GVW	Ø.5	[e]	76.4	64.7	18.9	9	<u>20</u>	<u> 3</u>	786						
* STATE	*SPS PR	* DATE		E Axle F jht. weight	2/0	<u></u> و ۱.	e le	<u>, </u>	2/0	/ ()	0/4	1 3 C	3/[13					
				D Axle E		2/2 2/2	<u>, a-</u>	د / ته و ر	1.	1/2 1/4 1/4	···	1	د. ،	E					
				C Axle D ht. weight.	30 20 20 20 20 20 20 20 20 20 20 20 20 20	2/6 N/6		10 10 10 10 10 10 10 10 10 10 10 10 10 1	180 1	10000			0/2	1	<u> </u>				
				B Axle C ht. weight.	2/00/2		2/00/20 1/00/20 1/20/20/20/20/20/20/20/20/20/20/20/20/20/	1 2	>		**************	 	4 i i / i	3/2	,				
		of 3		A Axle B	3/0	15 1/2 1/2	1 20	-8-	0	102 Na.	7	-	0,1	1/00	:				
	a	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Axle A	(S.S.)	5/6 5/3/6	2/20 2/00 0			41	6/4 0/4	3/2 3/2	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0/9 0/9					
Sheet 21	LTPP Traffic Data	Records	ŧ	rd WIM Speed	88	Ň	् १ १	371 GO	_		37	04 68		* /l	•				
She	LTPP Ti	est Truck		Record No.	1 24 ESS3	- 150 S	5.963	29637		27 Pag TI 9	74 S	** Z80	12 29E78	19887					
		WIM System Test Truck Records		Time	5. arc	7.30	•		15.05.4	12.CS. P	15. So. 0	A Solo Solo	D'W'S	1×1000					
		WIM		Pass	, tupper,		~	7	'n	*/\ 		4		M		 4144		•	ومعالم المعالم
			0.1	r Truck d	-	7	_	7		N		2	n paser	7					
			Rev. 08/31/2001	Radar Speed		SS.	797) 			600	63.069	N N	254	•				
			Rev.	Pvmt temp	\$2.0	22	XX X	53.5	<i>ڳ</i> لا	$\frac{N}{\sigma}$	089	es,	تى ق	ر ان ک)				

6420060018_SPSWIM_TO_18_20_2.86_0200_Cal_1_Sheet_21.doc

					Sheet 21	-					* ST	*STATECC	CODE			2		
				Π	LTPP Traffic Data	c Data					SdS*	*SPS PROJECT_ID	CTID		C	02	9	
			WIM Sys	WIM System Test Truck Records	Truck Re	cords	Jo	ž			* DATE	TE		7 40	00/2	0		
/80	31/2001																	
Pvmt temp	Radar Speed	Truck	Pass	Time	Record No.	Speed	Axle A weight.	Axle B weight.	Axle C weight.	Axle D weight.	Axle E weight.	Axle F weight	@vw	A-B space	B-C space	c-D space	D-E space	E-F space
\$2.0	3		, (C) Philippine	25.37.0	7883	SS	5.5	·	8.3/8	3/4	2/00		œ. Si	2.0	4.2	36.4	4	
25.0	\$\$	7		N. 12. R	28.557	SX	5.6	3/2	<u> </u>	, ,	2/2		0.1°C	67.670.0	ل ب	+ m	W. 19	
S.E.	00		7	88	<i>ESM</i> 033	Q Q	0) (N)	2/2	9/2 9/2	1/2/2	e je		76.4	12	43	4.00		
53.8	0 وي ا	7	7	93731	29637	9		i/0,	15 S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.		0,0		64.7		4:3	\ ሸ	<i>i</i>	
<u>e.</u> V	\% 2		W	2.5°		6	. 2	200	1/3	e/0	c/g			ā,	43	1	6.0	
5	و (Ŋ	ĺη	4.8.7	29719	6+	40/2	2/m	l .		1/0		7 89	<u> </u>	4.2		4	
(3000)	69		ţ	8.50.01	28 Pa4	GS)	64 612			, w	0/4 0/4		83.4	<u>a</u>	المحمد.		4	
62.068	<i>lo</i> es	2	4	20°C	हैं 69 हिं	8	4/2	1/0 1/1	······		7.16		(is by 2) 2)	6.0	4.5	<u>-</u>	ς. α_	
ر دی: ۵	N	T WANTED,	S	2,72.0	298E	, s	0.00 0.000 0.0000		100	·····	3/1-		981	† + + + v v v v v v v v v v v v v v v v		\s\ \2	4	
0.09	N N	2	V)	7,40	1988	d		2/t 3/t	3/2	e/s	12.6			Ø		7.	40	
	,							,										
		e														3700		
Recorded by	ed by	1		9			O	Checked by	by									

6420060018_SPSWIM_TO_18_20_2.86_0200_Cal_1_Sheet_21.doc

13 Co.						Chant 3	1					4 (1	1	a d	-	***************************************			
Special Truck Records A of 2 The Record A of 2 The Recor				aran and a second	LI	PP Traffic	c Data	***************************************				*SPS	PROJEC	-) i			ر د د	<u>ر</u>	
				WIM Sy:	stem Test	Truck Re	cords	of	2			*DA	TE	1	1+0	-) () ()		
11 Shedd	Rev. 08/	31/2001							ŀ.)	.			
35 60 1 6 600 200 200 00 00 00 00 00 00 00 00 00 00		Radar Speed	Truck		Time	Record No.	WIM	Axle A weight.	Axle B weight.	Axle C weight.			Axle F weight	@MM		B-C space	C-D space	D-E space	E-F space
3.5 60 2 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.5	9			\$ 150g	in the second	0 3	·	1		(0)	3/5	140	18.2	3	6.4	\$\langle \cdot \cd	¥	
1 64 1 1	t. W	0	ر		636.13	. 7 7 N		. 0	6/4	(90)	76	1,0 0,7 2,4		3	, ç		100 EV	4	
1 Cot 2 7 1000 30044 609 625 72 621 621 6231 1974 13 21 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٥	Z		r	8,98,97		9	/3)		Nr.	pser	2/00 2/00		J.	8-18	ú	y S		
10 1 8 11 10 10	12.5	ار ق	ال		at 15:01	3CCAS		4/2	احبر ا	Coo 1		17/0 W		â			t m	١.	
10 2 8 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10			همینمون ،		4, 90,11	7700	O T		ټي.	\ 3				A N		G	7,3%	J J	
5 55 2 9 North 3202 55 50 70 70 70 70 19 19 19 19 19 19 19 19 19 19 19 19 19	1 4 0	Ĉ O	4		Q; 150.14	74.10g	0	\		, (3)		W W	VOLUME TO THE PROPERTY OF THE	7.10	3	34	7.7	8.00	
15 55 2 9 NILLY 3226 55 5 6 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ž	艺	, pakerroteide		C. AZ.	3022		, ત્રી	2 7/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	\ OD	*	2/g		T E		4	04		
1.5 (b) 1 10 1.40° 28.31 10 1.74		S	7		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 325 325	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	'\ Q.	1/s 1/s		10	:1/r		263	a a	_	ŭ.		
7. 60 2 10 11. 12. 12. 12. 12. 14. 15. 14. 15. 15. 16. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	ية. كرغ	سر	AIM -	1	70,9	25.31	7	-6-1		19 to	O	200		15.5	1	l .	7.00	Ŋ	
10 by 2 11 12 12 12 12 12 12 12 12 12 12 12 1	Sa.	0	N		7. Q.	S.				72	·	0/180.		<u>Q'</u>	0	£ 4	<u>у</u>		
1,0 64 2 11 2,000 20 20 12 13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	0.00	ار. و.		,,,,,,,	7.3		t e	180	10		1	100 Jan 12 Jan 1		Zi X		<u> </u>	Ţ,	n ž	
5 10 1 12 18 2012 10 5.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		6 G	7	I	3, 3,	3	et O	1		0/0	\ ~~	و الم		(N)		, 40		4	
70 2 12 105 25/41 70 4.2 6.2 6.2 4.3 6.2 64.4 19.3 4.2 21.4 6 554 1 13 105/20 5623 55 60 714 7.9 6.8 655 12.1 19.4 19.3 4.4 31.1 4 555 2 13 105/20 355 5.5 60 714 5.0 6.4 7.9 6.8 655 12.1 19.4 19.3 1.1 4 Ided by L.	<u>a</u>	9	, weather		-8- 	R	ì	6	Ť.	, φ		3/10		19-51	<u>] </u>	3	100		
30 55 2 12 13 13 13 2623 55 60 71 7.9 6.0 7.9 6.0 1.0 1 4.4 5.7 30 9 1.0 55 2 2 1.5 15 16 18 20	Ž 3		2	V	4.	400		(1)		\ ~	Œ	No	***************************************	رة ب ب	-		t	É	
55 2 13 13:16:11 3 c82 3 5 5 5 4 7:1 7:4 6:4 77 66.4 20:0 4:4 31:11 4 6:4 77 66.4 77 66.9 20:0 4:4 31:11 4				l	13.0.25	677	\∕\			ď	(1)	ير توات	7	ļ		i i	T 2	3	
Checked by	3	N	ال	ı	236.11	3 682.3	\n	2/2	15040	+	**	315		a				4	
	Record	ed by			7 3				Thecked	1 by			1						!

6420060018_SPSWIM_TO_18_20_2.86_0200_Post_Sheet_21.doc

				E-F space																
O	0			D-E space	() tr	0 +	١	9-	1	l	4	u, 2	-	4	0.4	9) }	7	4	400
	7	0	*	C-D space	Š.	40 3	À	77.	0 0 0	<u>~</u>	30.3	w N	9		9	ナ あ	0 6	572	w) 0 W	7
	0	100		B-C space	d	9	+ +	4	î,	Ţ	ع ش	4.2	+ +		or t	if wh		4	4 5	3
		170		A-B space	Ž.	, K	S	3	200	and in	Ž.	<u>a</u> ,	e Ž	10. 12.	t e	Œ.	j	5.0	"energia	Z.
CODE	CT_ID			MV9	\$0.00	123	W. 20	000	31,	7.19	<u>ر</u> پ	7 (K)	<u>ن</u> ن	3.40	70 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0	ر مرا ا	ę gri	3	64.3
* STATE CC	*SPS PROJECT	* DATE		Axle F weight															***************************************	
#ST	*SP	* D/		Axle E weight.		7/10		- 1	(3)	3/1-	1.00 P	7(3)			0/0°.	ار ال	8.8	. J.	2/2 1/0	3/2
				Axle D weight.	100	4/2	No.	3/2		1.76	1/2	4/2	o Va	t, t,	40.2 10.40	1/2	ll.		2/3/	ن قاراً
				Axle C weight.		1/10 01/10	7/W	673	2/0	1/1	90/2 0/0j			2/0/2	afa B	12/00 15/00 15/00	6.12	Jess,	2/5 7/00	
		<u>`</u>		Axle B weight.	2/2 2/2	1/2	9)/R		9/2 NV	1	. 9/2. 1/2.		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. %	3/4	2/3	ش آلن		00/2 00/2	2/2
		Jo L		Axle A weight.	4/3	4/0 0/2	1/2 1/3	6/2		5:7 2:3	Mis Na	43	6.3	42	art of the second	d's	T/s	1.0	,	2/2
	Data			WIM Speed	9		₩.3	Ç Ç	. 11	\ \ \ \ \	\gamma	すら	55	O.	0	Ç	. J	ろそ	Ī	
Sheet 2	LTPP Traffic	Truck Records		Record No.	238	3.52.3	900 K	21012	89 89	3 690	3148		31273	1788	3870	Š M) Ž	12 C	LIVE	3542
		tem Test		Time	59,65		ng.	10.74.71	10/2 10/2 10/2	(3.9.t.)	A. I. S.	, K.C.	1000 J	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		3	02:03:71	E. S. C. I.	9.0°.	18:16:30
		WIM System		Pass	7	3	5	5	.SL	2	*	, income	. <u>T</u>	Øĵ		O.	0	0	d	
				Truck	**	7	بعسين	4	artitude	ړ	<i>~</i> ~~	d	byggappanyik.	d		7	المارينين	7	مسبيس	CT
			08/31/2001	Radar	, S	Š	ÇS	Z	0	Ÿ	\ \ \ \	t O	S	0	9	9	さ	N.	٠ <u>٠</u>	0
				Pvmt	2	- <u>e</u>	<u>e</u> ()	<u>e</u>		2	0		3	720	89. S	Š	ં ગુલ્ફ	88.0	Si Si	ã

Checked by_

Recorded by

3.11.2. Iteration 1 Worksheet

Date 4/17 (67

Beginning factors:

Speed Point (mph)	Name	Value
Overall specing	our surar speciety	\$ 365cm
Front Axle		1 / 2
I-(১৪)	Second 5 - 1	3784/3784
2-(9,	2	3901 /3901
3-(105)	3	3943 / 3943
4-(112)	C.	3980/3980
5-(120)	5	3922 /3922

Errors (Pre-Validation):

	Speed Point 1 (SS.)	Speed Point 2 (%)	Speed Point 3	Speed Point 4	Speed Point 5
F/A	J	- 5 %	- 3 %	5 %	-116
Tandem	0	- 3 %	-3%	- 2 2	- 270
GVW	0	- 5 %	- 5 %	- 3 70	- 5 %

Adjustments:

J	Raise	Lower	Percentage
Overall Meina			1267
Front Axle			
Speed Point 1			
Speed Point 2	d		7.20
Speed Point 3			270
Speed Point 4			2.20
Speed Point 5			5 %

End factors:

Speed Point (mph)	Name	Value
Overall + pacing	Dix to someon in the community in	370 cm
Front Axle		
1-(%%)	saud ha I	3784
2-(96)	1_	3979
3-(105)	3	4022
4-(\12.)	· \	4060
5-(10)	5	4118

TEST VEHICLE PHOTOGRAPHS FOR SPS WIM VALIDATION

April 17 and 18, 2007

STATE: Kanasas

SHRP ID: 0200

Photo 1 - Truck_1_Tractor_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 2
Photo 2 - Truck_1_Trailer6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 2
Photo 3 - Truck_1_Suspension_1_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 3
Photo 4 - Truck_1_Suspension_2_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 3
Photo 5 - Truck_1_Suspension_3_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 4
Photo 6 - Truck_2_Tractor_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 4
Photo 7 - Truck_2_Trailer_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 5
Photo 8 - Truck_2_Suspension_1_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 5
Photo 9 - Truck_2_Suspension_2_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 6
Photo 10 - Truck_2_Suspension_3_6420060018_SPSWIM_TO_18_20_2.86_0200_	
04_17_07.JPG	. 6

Photo 1 - Truck_1_Tractor_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 2 - Truck_1_Trailer__6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 3 - Truck_1_Suspension_1_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 4 - Truck_1_Suspension_2_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 5 - Truck_1_Suspension_3_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 6 - Truck_2_Tractor_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 7 - Truck_2_Trailer_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 8 - Truck_2_Suspension_1_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 9 - Truck_2_Suspension_2_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

Photo 10 - Truck_2_Suspension_3_6420060018_SPSWIM_TO_18_20_2.86_0200_04_17_07.JPG

ETG LTPP CLASS SCHEME, MOD 3

13	-	13	12	ļ	ļ	-	-				, w			7			ļ. 	8	6	ļ	4	Ç	2	S	_						
9 Axle Multi's	8 Axle Multi's	7 Axle Multi's	Semi+Full Trailer, 3S12	Semi, 3S3	Semi+FullTrailer, 2812	Semi, 2S3	Truck+FullTrailer (3-2)	Semi, 3S2	5 Axle Single Unit	2D w/3 Axle Trailer	Other w/3 Axle Trailer	Semi, 2S2	Semi, 3SI	4 Axle Single Unit	2D w/2 Axle Trailer	Other w/2 Axle Trailer	Car w/2 Axle Trailer	Semi, 2S1	3 Axle Single Unit	2D w/ 1 Axle Trailer	Bus	Other w/ 1 Axle Trailer	Car w/ 1 Axle Trailer	2D Single Unit	Bus	Other (Pickup/Van)	Passenger Car	Motorcycle	Office Agency Control of the Control		ę, w
9	80	7	6	6	J	5	5	'n	U,	5	y,	4	4	4	4	4	4	3	w	သ	w	w	w	2	2	2	2	2		Axies	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
6.00-45.00	6.00-45.00	6.00-45.00	6.00-26.00	6.00-26.00	6.00-30.00	6.00-30.00	6.00-30.00	6.00-30.00	6.00-23.09	6.00-23.09	10.11-23.09	6.00-26.00	6.00-26.00	6.00-23.09	6.00-26.00	10.11-23.09	6.00-10.10	6.00-23.09	6.00-23.09	6.00-23.09	23.10-40.00	10.11-23.09	6.00-10.10	6.00-23.09	23.10-40.00	10.11-23.09	6.00-10.10	1.00-5.99			Spacing 1
3.00-45.00	3.00-45.00	3.00-45.00	2.50-6.30	2.50-6.30	11.00-26.00	16.00-45.00	2.50-6.29	2.50-6.29	2.50-6.29	6.30-35.00	6.00-25.00	8.00-45.00	2.50-6.29	2.50-6.29	6.30-40.00	6.00-30.00	6.00-30.00	11.00-45.00	2.50-6.29	6.30-30.00	3.00-7.00	6.00-25.00	6.00-25.00								2 Summer
3.00-45.00	3.00-45.00	3.00-45.00	11.00-26.00	6.10-50.00	6.00-20.00	2.50-6.30	6.30-50.00	6.30-65.00	2.50-6.29	1.00-25.00	1.00-11.99	2.50-20.00	13.00-50.00	2.50-12.99	1.00-20.00	1.00-11.99	1.00-11.99									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					opacing o
3.00-45.00	3.00-45.00	3.00-45.00	6.00-24.00	2.50-11.99	11.00-26.00	2.50-6.30	12.00-27.00	2.50-11.99	2.50-6.30	1.00-11.99	1.00-11.99																				# Surnedo
3.00-45.00	3.00 - 45.00	3.00-45.00	11.00-26.00	2.50-10.99		***************************************							***************************************																		c Surredo
3.00-45.00	3.00-45.00	3.00-45.00																													o Surpade
3.00-45.00	3.00-45.00													and the second		77700							and a								Spacing /
3.00-45.00																															Spacing 8
20.00 >	20.00>	20.00>	20.00 >	20.00>	20.00>	20.00 >	20.00>	20.00 >	12.00 >	12.00-19.99	1.00-11.99	20.00 >	20.00 >	12.00>	12.00-19.99	1.00-11.99	1.00-11.99	20.00 >	12.00 >	12.00-19.99	20.00 >	-1.00-11.99	1.00-11.99	8.00>	12.00 >	1.00-7.99	1.00-7.99	0.10-3.00		Weight Min-Max	Gross
5.0	5.0	5.0	5.0	5.0	3.5	3.5	3.5	5.0	3.5	2.5		3.5	5.0	3.5	2.5		***************************************	3.5	3.5	2.5				2.5						Weight Min *	Axle

Spacings in feet
Weights in kips (Lbs/1000)
* Suggested Axle 1 minimum weight threshold if allowed by WIM system's class algorithm programming

System Operating Parameters

Kansas SPS-2 (Lane 1)

Validation Visit – 18 April, 2007

Calibration factor for sensor #1:

88 kph:	3784
96 kph:	3901
104 kph:	3943
112 kph:	3980
120 kph:	3922

Calibration factor for sensor #2:

88 kph:	3784
96 kph:	3901
104 kph:	3943
112 kph:	3980
120 kph:	3922